Mariolis, Theodore and Veltsistas, Panagiotis (2020): Γιορτάζοντας τα 60 χρόνια των Θεωριών του Rudolf E. Kálmán και του Piero Sraffa: Τα Συστήματα Τιμών του Πραγματικού Κόσμου είναι Σχεδόν Μη-Ελέγξιμα.
Preview |
PDF
MPRA_paper_99648.pdf Download (802kB) | Preview |
Abstract
Using input-output data from the World Input-Output Database (172 Symmetric Input-Output Tables of 43 countries, spanning the period 2000-2014), this paper estimates the degree and rank of Kalman controllability of the relevant Sraffian price systems. The findings suggest that: (i) the degree of controllability is in the range of 10^(–21) to 10^(–18); (ii) for a tolerance of 10^(–4) (of 10^(–2)), the relative numerical rank of controllability is in the range of 7% to 18% (of 4% to 9%); and, therefore, (iii) the price systems are almost uncontrollable. These findings also explain the specific shape features of the empirical price-wage-profit rate curves, which are at the heart of capital theory and, thus, show that the Sraffian theory is not only the most general one but also provides a sound empirical basis.
Item Type: | MPRA Paper |
---|---|
Original Title: | Γιορτάζοντας τα 60 χρόνια των Θεωριών του Rudolf E. Kálmán και του Piero Sraffa: Τα Συστήματα Τιμών του Πραγματικού Κόσμου είναι Σχεδόν Μη-Ελέγξιμα |
English Title: | Celebrating 60 Years of Rudolf E. Kálmán’s and Piero Sraffa’s Theories: Real-World Price Systems are Almost Uncontrollable |
Language: | Greek |
Keywords: | Almost uncontrollable system; Skew characteristic value distribution; Sraffian theory |
Subjects: | B - History of Economic Thought, Methodology, and Heterodox Approaches > B5 - Current Heterodox Approaches > B51 - Socialist ; Marxian ; Sraffian C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C67 - Input-Output Models D - Microeconomics > D4 - Market Structure, Pricing, and Design > D46 - Value Theory D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D57 - Input-Output Tables and Analysis |
Item ID: | 99648 |
Depositing User: | Theodore Mariolis |
Date Deposited: | 04 May 2020 10:40 |
Last Modified: | 04 May 2020 10:40 |
References: | Friedland, B. (1975). Controllability index based on conditioning number. Journal of Dynamic Systems, Measurement, and Control, 97(4), 444–445. Friedland, B. (1986). Control system design. An introduction to state-space methods. New York: McGraw-Hill. Kalman, R. E. (1960). On the general theory of control systems. International Federation of Automatic Control Proceedings Volumes, 1(1), 491–502. Kalman, R. E. (1982). On the computation of the reachable/observable canonical form. Society for Industrial and Applied Mathematics Journal on Control and Optimization, 20(2), 258–260. Kalman, R. E., Ho, Y. C., & Narendra, K. S. (1963). Controllability of linear dynamic systems. Contributions to Differential Equations, 1(2), 189–213. Mariolis, T. (2019). The location of the value theories in the complex plane and the degree of regularity-controllability of actual economies. Mimeo. https://www.researchgate.net/publication/337565978 Moore, B. (1981). Principal component analysis in linear systems: Controllability, observability, and model reduction. Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 26(1), 17–32. Sraffa, P. (1960). Production of commodities by means of commodities. Prelude to a critique of economic theory. Cambridge: Cambridge University Press. Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & De Vries, G. J. (2015). An illustrated user guide to the World Input–Output Database: Τhe case of global automotive production. Review of International Economics, 23(3), 575–605. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/99648 |