Sucarrat, Genaro (2020): garchx: Flexible and Robust GARCH-X Modelling.
Preview |
PDF
MPRA_paper_100301.pdf Download (304kB) | Preview |
Abstract
The R package garchx provides a user-friendly, fast, flexible and robust framework for the estimation and inference of GARCH(p,q,r)-X models, where p is the ARCH order, q is the GARCH order, r is the asymmetry or leverage order, and 'X' indicates that covariates can be included. Quasi Maximum Likelihood (QML) methods ensure estimates are consistent and standard errors valid, even when the standardised innovations are non-normal or dependent, or both. Zero-coefficient restrictions by omission enable parsimonious specifications, and functions to facilitate the non-standard inference associated with zero-restrictions in the null-hypothesis are provided. Finally, in formal comparisons of precision and speed, the garchx package performs well relative to other prominent GARCH-packages on CRAN.
Item Type: | MPRA Paper |
---|---|
Original Title: | garchx: Flexible and Robust GARCH-X Modelling |
Language: | English |
Keywords: | Volatility, GARCH, covariates, robust, R |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C87 - Econometric Software |
Item ID: | 100301 |
Depositing User: | Dr. Genaro Sucarrat |
Date Deposited: | 11 May 2020 16:36 |
Last Modified: | 11 May 2020 16:36 |
References: | T. Bollerslev. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31: 307–327, 1986. T. Bollerslev and J.Wooldridge. Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time Varying Covariances. Econometric Reviews, 11: 143–172, 1992. C. Brownlees, F. Cipollini, and G. Gallo. Multiplicative Error Models. In L. Bauwens, C. Hafner, and S. Laurent, editors, Handbook of Volatility Models and Their Applications, pages 223–247.Wiley, New Jersey, 2012. F. C. Drost and T. E. Nijman. Temporal Aggregation of Garch Processes. Econometrica, 61: 909–927, 1993. R. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflations. Econometrica, 50: 987–1008, 1982. R. F. Engle and J. R. Russell. Autoregressive Conditional Duration: A New Model of Irregularly Spaced Transaction Data. Econometrica, 66: 1127–1162, 1998. J. C. Escanciano. Quasi-maximum likelihood estimation of semi-strong GARCH models. Econometric Theory, 25: 561–570, 2009. C. Francq and L. Q. Thieu. Qml inference for volatility models with covariates. Econometric Theory, 2018. https://doi.org/10.1017/S0266466617000512. C. Francq and J.-M. Zakoïan. GARCH Models. Wiley, New York, 2019. 2nd. Edition. J. Geweke. Modelling the Persistence of Conditional Variance: A Comment. Econometric Reviews, 5: 57–61, 1986. A. Ghalanos. rugarch: Univariate GARCH Models, 2020. URL https://CRAN.R-project.org/package=rugarch. R package version 1.4-2. B. E. Hansen. Autoregressive Conditional Density Estimation. International Economic Review, 35: 705–730, 1994. P. R. Hansen, Z. Huan, and H. H. Shek. Realized GARCH: A Joint Model for Returns and Realized Measures of Volatility. Journal of Applied Econometrics, 27: 877–906, 2012. O. Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.R-project.org/package=microbenchmark. R package version 1.4-7. A. Milhøj. A Multiplicative Parametrization of ARCH Models. Research Report 101, University of Copenhagen: Institute of Statistics, 1987. S. Pantula. Modelling the Persistence of Conditional Variance: A Comment. Econometric Reviews, 5: 71–73, 1986. G. Sucarrat. garchx: Flexible and Robust GARCH-X Modelling, 2020. URL https://CRAN.R-project.org/package=garchx. R package version 1.1. G. Sucarrat and S. Grønneberg. Risk Estimation with a Time Varying Probability of Zero Returns. Journal of Financial Econometrics, 2020. Forthcoming. DOI: https://doi.org/10.1093/jjfinec/nbaa014. A. Trapletti and K. Hornik. tseries: Time Series Analysis and Computational Finance, 2019. URL https://CRAN.R-project.org/package=tseries. R package version 0.10-47. D. Wuertz, T. Setz, Y. Chalabi, C. Boudt, P. Chausse, and M. Miklovac. fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling, 2020. URL https://CRAN.R-project.org/package=fGarch. R package version 3042.83.2. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/100301 |