Diunugala, Hemantha Premakumara and Mombeuil, Claudel (2020): Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods. Published in: Journal of Tourism, Heritage & Services Marketing , Vol. 6, No. 3 (30 October 2020): pp. 3-13.
Preview |
PDF
MPRA_paper_103779.pdf Download (2MB) | Preview |
Abstract
Purpose: This study compares three different methods to predict foreign tourist arrivals (FTAs) to Sri Lanka from top-ten countries and also attempts to find the best-fitted forecasting model for each country using five model performance evaluation criteria. Methods: This study employs two different univariate-time-series approaches and one Artificial Intelligence (AI) approach to develop models that best explain the tourist arrivals to Sri Lanka from the top-ten tourist generating countries. The univariate-time series approach contains two main types of statistical models, namely Deterministic Models and Stochastic Models. Results: The results show that Winter’s exponential smoothing and ARIMA are the best methods to forecast tourist arrivals to Sri Lanka. Furthermore, the results show that the accuracy of the best forecasting model based on MAPE criteria for the models of India, China, Germany, Russia, and Australia fall between 5 to 9 percent, whereas the accuracy levels of models for the UK, France, USA, Japan, and the Maldives fall between 10 to 15 percent. Implications: The overall results of this study provide valuable insights into tourism management and policy development for Sri Lanka. Successful forecasting of FTAs for each market source provide a practical planning tool to destination decision-makers.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods |
Language: | English |
Keywords: | foreign tourist arrivals, winter’s exponential smoothing, ARIMA, simple recurrent neural network, Sri Lanka |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C45 - Neural Networks and Related Topics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling Z - Other Special Topics > Z0 - General |
Item ID: | 103779 |
Depositing User: | Prof Evangelos Christou |
Date Deposited: | 30 Oct 2020 14:35 |
Last Modified: | 03 Nov 2020 19:13 |
References: | Akaike, H. (1974). A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike (pp. 215-222): Springer. Akuno, A. O., Otieno, M. O., Mwangi, C. W., & Bichanga, L. A. (2015). Statistical Models for Forecasting Tourists’ Arrival in Kenya. Open Journal of Statistics, 05(01), 60-65. doi:10.4236/ojs.2015.51008 Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: forecasting and control. San Francisco: Holden-Day. Briedenhann, J. (2007). The Role of the Public Sector in Rural Tourism: Respondents' Views. Current Issues in Tourism, 10(6), 584-607. doi:10.2167/cit331.0 Chandra, S., & Kumari, K. (2018). Forecasting Foreign Tourist Arrivals to India using Time Series Models. Journal of Data Science, 16(4), 707-722 doi:10.6339/jds.201810_16(4).00003 Chatzigeorgiou, C. and Christou, E. (2020). Adoption of social media as distribution channels in tourism marketing: A qualitative analysis of consumers’ experiences. Journal of Tourism, Heritage & Services Marketing, Vol. 6, No. 1, pp. 25-32. Cho, V. (2003a). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24, 323-330. doi:10.1016/S0261-5177(02)00068-7 Cho, V. (2003b). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24(3), 323-330. doi:10.1016/s0261-5177(02)00068-7 Christou, E. (2010). Investigating attitudes towards mobile commerce for travel products. Tourism: An International Interdisciplinary Journal, 58(1): 7–18. Chu, F.-L. (2004). Forecasting tourism demand: a cubic polynomial approach. Tourism Management, 25(2), 209-218. Chu, F.-L. (2009). Forecasting tourism demand with ARMA-based methods. Tourism Management, 30(5), 740-751. doi:https://doi.org/10.1016/j.tourman.2008.10.016 Claveria, O., Monte, E., & Torra, S. (2015). Tourism Demand Forecasting with Neural Network Models: Different Ways of Treating Information. 17(5), 492-500. doi:10.1002/jtr.2016 Coshall, J. T. (2009). Combining volatility and smoothing forecasts of UK demand for international tourism. Tourism Management, 30(4), 495-511. doi:https://doi.org/10.1016/j.tourman.2008.10.010 Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431. Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211. Fotiadis, A. & Williams, R.B. (2018). "TiCoSa" a 3d matrix conceptual model to investigate visitors' perceptions in an athletic event. Journal of Tourism, Heritage & Services Marketing, 4(2), 32–36. http://doi.org/10.5281/zenodo.1490450. Gnanapragasam, S. R. (2018). Tourist Arrivals in Sri Lanka: A Comparative Study of Holt- Winter’s versus Box- Jenkin’s Modeling Methods. OUSL Journal, 13(1), 65. doi:10.4038/ouslj.v13i1.7395 Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499-510. doi:https://doi.org/10.1016/S0261-5177(02)00009-2 Higgins-Desbiolles, F. (2018). Sustainable tourism: Sustaining tourism or something more? Tourism management perspectives, 25, 157-160. Jordan, M. I. (1997). Chapter 25 - Serial Order: A Parallel Distributed Processing Approach. In J. W. Donahoe & V. Packard Dorsel (Eds.), Advances in Psychology (Vol. 121, pp. 471-495): North-Holland. Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of Tourism Research, 75, 410-423. doi:https://doi.org/10.1016/j.annals.2019.01.014 Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. London: Butterworth Scientific. Li, G., Wong, K. K. F., Song, H., & Witt, S. F. (2006). Tourism Demand Forecasting: A Time Varying Parameter Error Correction Model. Journal of Travel Research, 45(2), 175-185. doi:10.1177/0047287506291596 Lichtendahl, K. C., & Winkler, R. L. (2020). Why do some combinations perform better than others? International Journal of Forecasting, 36(1), 142-149. doi:https://doi.org/10.1016/j.ijforecast.2019.03.027 Lim, C., & McAleer, M. (2001a). Forecasting Tourist Arrivals. Annals of Tourism Research, 28(4), 965-977. doi:doi:10.1016/s0160-7383(01)00006-8 Lim, C., & McAleer, M. (2001b). MONTHLY SEASONAL VARIATIONS: Asian Tourism to Australia. Annals of Tourism Research, 28(1), 68-82. doi:doi:10.1016/s0160-7383(00)00002-5 Martin, C. A., & Witt, S. F. (1989). Accuracy of econometric forecasts of tourism. Annals of Tourism Research, 16(3), 407-428. doi:https://doi.org/10.1016/0160-7383(89)90053-4 Mavragani, E., Nikolaidou, P. & Theodoraki, E. (2019). Traveler segmentation through Social Media for intercultural marketing purposes: The case of Halkidiki. Journal of Tourism, Heritage & Services Marketing, 5(1), 15–23. http://doi.org/10.5281/zenodo.2641011. Nanthakumar, L., & Ibrahim, Y. (2010). Forecasting International Tourism Demand in Malaysia Using Box Jenkins Sarima Application South Asian Journal of Tourism and Heritage 3(2), 50-60. Nanthakumara, L., & Ibrahim, Y. (2010). Forecasting International Tourism Demand in Malaysia Using Box-Jenkins Sarima Application. South Asian Journal of Tourism and Heritage, 3(2), 50-60. Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models : concepts and cases. New York, N.Y.: Wiley. Pirnar, I., Kurtural, S., & Tutuncuoglu, M. (2019). Festivals and destination marketing: An application from Izmir City. Journal of Tourism, Heritage & Services Marketing, 5(1), 9–14. http://doi.org/10.5281/zenodo.2640987 Saayman, A., & Saayman, M. (2010). Forecasting Tourist Arrivals in South Africa. Acta Commercii, 281-293. Salman, A. K., Shukur, G., & Bergmann-Winberg, M.-L. v. (2007). Comparison of Econometric Modelling of Demand for Domestic and International Tourism: Swedish Data. Current Issues in Tourism, 10(4), 323-342. doi:10.2167/cit257.0 Sheresheva, M. Y., Polukhina, A. N., & Oborin, M. S. (2020). Marketing issues of sustainable tourism development in Russian regions. Journal of Tourism, Heritage & Services Marketing, 6(1), 33–38. http://doi.org/10.5281/zenodo.3603422 Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75-85. doi:https://doi.org/10.1016/j.ijforecast.2019.03.017 Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29(2), 203-220. doi:https://doi.org/10.1016/j.tourman.2007.07.016 Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting: Launching the Annals of Tourism Research Curated Collection on tourism demand forecasting. Annals of Tourism Research, 75, 338-362. doi:10.1016/j.annals.2018.12.001 Spyridou, A. (2017). Perceived Service Quality and Customer Revisiting Intention: The Case of "all you can eat" Asian Restaurants in Southern Taiwan. Journal of Tourism, Heritage & Services Marketing, 3(2), 30–38. http://doi.org/10.5281/zenodo.1209129 Sun, X., Sun, W., Wang, J., Zhang, Y., & Gao, Y. (2016). Using a Grey–Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China. Tourism Management, 52, 369-379. doi:https://doi.org/10.1016/j.tourman.2015.07.005 Teixeira, J. P., & Fernandes, P. O. (2012). Tourism Time Series Forecast -Different ANN Architectures with Time Index Input. Procedia Technology, 5, 445-454. doi:10.1016/j.protcy.2012.09.049 Thushara, S. C., Su, J.-J., & Bandara, J. S. (2019). Forecasting international tourist arrivals in formulating tourism strategies and planning: The case of Sri Lanka. Cogent Economics & Finance, 7(1), 1699884. doi:10.1080/23322039.2019.1699884 Trippi, R. R., & Turban, E. (1996). Neural networks in finance and investing : using artificial intelligence to improve real-world performance. Chicago: Irwin Professional Pub. Van Truong, N., Shimizu, T., Kurihara, T., & Choi, S. (2020). Generating reliable tourist accommodation statistics: Bootstrapping regression model for overdispersed long-tailed data. Journal of Tourism, Heritage & Services Marketing, 6(2), 30–37. http://doi.org/10.5281/zenodo.3837608 Volgger, M., Pechlaner, H., & Pichler, S. (2017). The practice of destination governance: A comparative analysis of key dimensions and underlying concepts. Journal of Tourism, Heritage & Services Marketing, 3(1), 18–24. http://doi.org/10.5281/zenodo.401371 Wong, K. K. F., Song, H., Witt, S. F., & Wu, D. C. (2007). Tourism forecasting: To combine or not to combine? Tourism Management, 28(4), 1068-1078. doi:https://doi.org/10.1016/j.tourman.2006.08.003 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/103779 |