Ghaninejad, Mousa (2020): عرضه، تقاضا، و پیشنهاد قیمت در بازار برق ایران.
Preview |
PDF
MPRA_paper_105340.pdf Download (2MB) | Preview |
Abstract
English Abstract: In this paper, I review the supply and demand side of the electricity market in Iran. I review the potential bidding strategies that are in place in this market. I evaluate the optimality of bidding and introduce a new bidding strategy that could raise the profits of the firms. In the market of this study, firms are allowed to bid step-wise and are constrained to bid ten steps per bid. The market dispatcher estimates the market demand and based on the cumulated supply functions clears the market at one specific price. Those steps that are below the market clearing price will be allowed to produce and sell in the market. I argue that a continuous supply function is optimal in this setting and it is at the profit of the firms to use a supply function as close to a continuous supply as possible, i.e. using all ten steps.
Persian Abstract: این مقاله به بررسی عرضه و تقاضا در بازار برق ایران میپردازد. ابتدا ساختارهای پیشنهاد قیمت در بازار برق ایران بررسی میشود. سپس، بهینگی هر کدام از این ساختارهای پیشنهاد قیمت و ارتباط آن با بازار برق در ایران بررسی میشود. در بازار مورد مطالعه، هر تولیدکننده میتواند تا ده پله پیشنهاد قیمت بدهد. شرکت برق سپس با تحمین تقاضا و جمع عرضهها در بازار قیمت نهایی را اعلام میکند. پلههایی که پایینتر از قیمت نهایی باشد اجازهی تولید خواهند داشت. من در این مقاله به طور نظری اثبات میکنم که استفاده از هر ده پله برای تولیدکننده بهینه است. بنابراین، جهت بیشینه کردن سود، هر تولیدکننده باید تا حد ممکن شبیه تابعی پیشنهاد قیمت بدهد که پیوسته باشد.
Item Type: | MPRA Paper |
---|---|
Original Title: | عرضه، تقاضا، و پیشنهاد قیمت در بازار برق ایران |
English Title: | Supply, Demand, and Bidding in Iran’s Electricity Market |
Language: | Persian |
Keywords: | Bidding; Electricity Market; Day-ahead Market; Energy; Policy |
Subjects: | L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L94 - Electric Utilities O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products P - Economic Systems > P2 - Socialist Systems and Transitional Economies > P28 - Natural Resources ; Energy ; Environment |
Item ID: | 105340 |
Depositing User: | Mousa Ghaninejad |
Date Deposited: | 16 Jan 2021 13:12 |
Last Modified: | 16 Jan 2021 13:12 |
References: | Al-Agtash, S. (2010). Supply curve bidding of electricity in constrained power networks. Energy, 35(7): 2886-92. Alagtash, S., & Yamin, H. (2004). Optimal supply curve bidding using benders decomposition in competitive electricity markets. Electric Power Systems Research, 71(3): 245-55. Angarita, J., Usaola, J., & Martínez-Crespo, J. (2009). Combined hydro-wind generation bids in a pool-based electricity market. Electric Power Systems Research, 79(7):1038-46. Aparicio, J., Ferrando, J. C., Meca, A., & Sancho, J. (2008). Strategic bidding in continuous electricity auctions: an application to the Spanish electricity market. Operations research, 229-241. Armstrong, M., Cowan, S., & Vickers, J. (1994). Regulatory reform - Economic analysis and British experience. Oxford: Oxford University Press. Attaviriyanupap, P., Kita, H., Tanaka, E., & Hasegawa, J. (2005). New bidding strategy formulation for day-ahead energy and reserve markets based on evolutionary programming. International Journal of Electrical Power & Energy systems, 27(3):157-67. Baldick, R., Grant, R., & Kahn, E. (2004). Theory and application of linear supply function equilibrium in electricity markets. Journal of Regulatory Economics, 25(2): 143-67. Bompard, E., Lu, W., Napoli, R., & Jiang, X. (2010). A supply function model for representing the strategic bidding of the producers in constrained electricity markets. International Journal of Electrical Power & Energy Systems, 32(6): 678-87. Bompard, E., Lu, W., Napoli, R., & Jiang, X. (2010). A supply function model for representing the strategic bidding of the producers in constrained electricity markets. International Journal of Electrical Power & Energy Systems, 32(6): 678-87. Borenstein, S., & Bushnell, J. (1999). An empirical analysis of the potential for market power in California’s electricity industry. Journal of Industrial Economics, 47(3): 285-323. Borenstein, S., & Bushnell, J. (1999). An empirical analysis of the potential for market power in California’s electricity industry. Journal of Industrial Economics. Borenstein, S., Bushnell, J., & Knittel, C. (1998). Market power in electricity markets: beyond concentration measures. Berkeley, CA: University of California Energy Institute. Camerer, C. F. (1991). orgDoes Strategy Research Need Game Theory? Strategic Management Journal, Vol. 12, 137-152. Chatterjee, B. (2009). An Optimization Formulation to Compute Nash Equilibrium in Finite Games. International Conference on Methods and Models in Computer Science. Conejo, A., Nogales, F., & Arroyo, J. (2002). Price-taker bidding strategy under price uncertainty. IEEE Transactions on Power Systems, 17(4):1081-8. David, A. (1993). Competitive bidding in electricity supply. IEE Proceedings -Generation, Transmission and Distribution, (pp. 140(5):421-6.). David, A., & Wen, F. (2000). Strategic bidding in competitive electricity markets: a literature survey. IEEE 2000 Power Engineering Society Summer Meeting, (pp. 4:2168-73). de la Torre, S., Arroyo, J., Conejo, A., & Contreras, J. (2002). Price maker self-scheduling in a pool-based electricity market: a mixed-integer LP approach. IEEE Transactions on Power Systems, 17(4):1037-42. de la Torre, S., Conejo, A., & Contreras, J. (2004). Finding multiperiod nash equilibria in pool-based electricity markets. IEEE Transactions on Power Systems, 19(1): 643-51. Dotoli, M., Epicoco, N., Falagario, M., Sciancalepore, F., & Costantino, N. (2014). A Nash equilibrium simulation model for the competitiveness evaluation of the auction based day ahead electricity market. Computers in Industry, 65: 774-785. Ernst, D., Minoia, A., & Marija, I. (2004). Market dynamics driven by the decision-making of power producers. Proc. of 2004 IREP symposium (pp. 1-6). bulk power system dynamics and control-VI. Fabra, N., Von Der Fehr, N., & Harbourd, D. (2002). Modeling electricity auctions. Electricity J, 15: 72-81. Fabra, N., von der Fehr, N.-H., & Harbord, D. (2006). Designing Electricity Auctions. The RAND Journal of Economics, Vol. 37, No. 1, 23-46. Federico, G., & Rahman, D. (2003). Bidding in an electricity pay-as-bid auction. Journal of Regulatory Economics, 24(2): 175-211. Ferrero, R., Shahidehpour, S., & Ramesh, V. (1997). Transaction analysis in deregulated power systems using game theory. IEEE Transactions on Power Systems, 12(3): 1340-1347. Foley , A., Gallachóir , B., Hur , J., & McKeogh, E. (2010). A strategic review of electricity systems models. Energy, 35(12):4522-30. Forgo, F., Szep, J., & Szidarovsky, F. (1999). Cooperative Games. In F. Forgo, J. Szep, & F. Szidarovsky, Introduction to the Theory of Games: Concepts, Methods, Application (pp. 217-237). London: Kluwer Academic Publication. Friedman, L. (1956). a competetive bidding strategy. operations research, Vol. 4, No. 1, 104-112. Gana, D., Wanga, J., & Bourcierb, D. V. (2005). An auction game model for pool-based electricity markets. Energy Systems , 27: 480–487. Gao, F., & Sheble, G. (2010). Electricity market equilibrium model with resource constraint and transmission congestion. lectric Power Systems Research, 80(1):9-18. Gao, F., & Sheble, G. (2010). Electricity market equilibrium model with resource constraint and transmission congestion. Electric Power Systems Research, 80(1): 9-18. Garcia, C. B., Lemke, C. E., & Luthi, H. (1973). Simplical Approximation of an Equilibrium Point of Noncooperative N-Person Games,. Mathematical Programming, 227-260. Genc, T., & Reynolds, S. (2011). Supply function equilibria with capacity constraints and pivotal suppliers. International Journal of Industrial Organization, 29(4): 432-42. Ghodsi, R., & Zakerinia, M. (2012). Forecasting Short Term Electricity Price Using Artificial Neural Network and Fuzzy Regression. International Journal of Academic Research in Business and Social Sciences, Vol. 2, No. 1, 286-293. Gong, L., Jing, S., & Xiuli, Q. (2011). Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot marketeA state-of-the-art review. Energy, 4686-4700. Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash equilibria. Journal of Economic Theory, Vol. 110, 65-86. Green, N., Neuhoff, K., & Twomey, P. (2004). A review of the monitoring of market power. Report Prepared at the Request of ETSO. Green, R. J., & Newbery, D. M. (1992). Competition in the British Electricity Spot Market. Journal of Political Economy, Vol. 100, No. 5, 929-953. Green, R., & Newbery, D. (1992). Competition in the British electricity spot market. Journal of Political Economy, 100(5): 929-53. Guan, X., Luh, P. B., Yan, H., & M., R. P. (1994). Optimization-based Scheduling of Hydrothermal Power. IEEE Transaction on power systems, Vol. 9, No. 2, 1023-1031. Haas, R., & Auer, H. (2006). The prerequisites for effective competition in restructured wholesale electricity markets. Energy, 31(6-7):857-64. Haghighat, H., Seifi, H., & Rahimikian, A. (2008). The role of market pricing mechanism under imperfect competition. Decision Support Systems, 45(2): 267-77. Hao, S. (2000). A study of basic bidding strategy in clearing pricing auctions. IEEE Transactions on Power Systems, 15(3):975-80. Hinz, J. (2004). A Revenue-Equivalence Theorem for Electricity Auctions. Journal of Applied Probability, Vol. 41, No. 2, 299-312. Hirschman, A. (1964). The paternity of an index. The American Economic Review, 54(5): 761. Hobbs, B. (1999). Models of Cournot competition in POOLCO and bilateral markets. Proc. of American Power Conference. Chicago. Hobbs, B., Metzler, C., & Pang, J. (2000). Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Transactions on Power Systems, 15(2): 638-45. Holmberg, p., & Newbery, d. (2010). The supply function equilibrium and its policy implications for wholesale electricity auctions. Utilities Policy, 18: 209-226. Hortacsu, A., & Puller, S. L. (2008). orgUnderstanding Strategic Bidding in Multi-Unit Auctions: A Case Study of the Texas Electricity spot market. The RAND Journal of Economics, Vol. 39, No. 1, 86-114. Hu, S., Kapuscinski, R., & Lovejoy, W. (2010). Bertrand-edgeworth auction with multiple asymmetric bidders. Social Science research network working paper series; Available at SSRN, http://ssrn.com/abstract¼1659996. Kang, D., Kim, B., & Hur, D. (2007). Supplier bidding strategy based on non-cooperative game theory concepts in single auction power pools. Electric Power Systems Research, 77(5-6): 630-6. Kian, A., Cruz, J., & Thomas, R. (2005). Bidding strategies in oligopolisticdynamic electricity double-sided auctions. IEEE Transactions on Power Systems, 20(1): 50-8. Klemperer, P., & Meyer, M. (1989). Supply function equilibrium in oligopoly under uncertainty. Econometrica, 57(6): 1243-77. Krishna, V. (2010). Auction theory. California: Elsevier academic press. Kumar, J. V., Pasha, S. J., & Kumar, D. (2010). Congestion Influence on Optimal Bidding in a Competitive Electricity Market using Particle Swarm Optimization. Majlesi Journal of Electrical Engineering, Vol. 5, No. 4, 1-6. Leeprechanon, N., David, A., Moorthy, S., Brooks, R., & Nealand, J. (2002). Market power in developing countries. International Conference on Power System Technology, (pp. vol. 3, 1805-1813). Kunming, China. Li, T., & Shahidehpour, M. (2005). Strategic bidding of transmission - constrained GENCOs with incomplete information. IEEE Transactions on Power Systems, 20(1): 437-47. Ma, X., Wen, F., Ni, Y., & Liu, J. (2005). Towards the development of risk-constrained optimal bidding strategies for generation companies in electricity markets. Electric Power Systems Research, 73(3):305-12. Matevosyan, J., & Soder, L. (2006). Minimization of imbalance cost trading wind power on the short-term power market. IEEE Transactions on Power Systems, 21(3): 1396-404. Maurer, L. T., & BarrosoLuiz, A. (2011). Electricity Auctions: An Overview of Efficient Practices. Washington DC: The World Bank. Milgrom, P., & Roberts, J. (1991). Adoptive and sophisticated learning in repeated normal form games. Games and economic behaviour, 3: 82-100. Minoia, A., Ernst, D., & Marija, I. (2004). Market dynamics driven by the decision-making of both power producers and transmission owners. IEEE Power Engineering Society general meeting, (pp. 255-260). Nanduri, V., & Das, T. (2009). A survey of critical research areas in the energy segment of restructured electric power markets. Electrical Power and Energy Systems, 181-191. Niu, H. (2005). Models for electricity market efficiency and bidding strategy analysis. Austin: Ph.D. Dissertation, Dept. Elec. Eng., Univ. Texas. Noghanibehambari, H., & Rahnamamoghadam, M. (2020). Is income inequality reflected in consumption inequality in Iran? Middle East Development Journal, 12(2), 284-303. doi:https://doi.org/10.1080/17938120.2020.1770488 Osborn, M. J. (2003). An Introduction to Game Theory. Oxford University Press. Osborne, M. J., & Rubinstein, A. (1994). A Course in Game Theory. Cambridge, Massachusetts: The MIT Press. Rahimi, F., & Vojdani, A. (1999). Meet the emerging transmission market segments. IEEE computer applications in power, Vol. 12, No.1, 26-32. Rahimiyan, M., & Rajabimashhadi, H. (2007). Risk analysis of bidding strategies in an electricity pay as bid auction: a new theorem. Energy Conversion and Management, 48(1):131-7. Rahimiyan, M., & Rajabimashhadi, H. (2008). Supplier’s optimal bidding strategy in electricity pay-as-bid auction: comparison of the Q-learning and a model-based approach. Electric Power Systems Research, 78(1): 165-75. Reddy, V. S., Subramanyam, B., & Surya Kalavathi, M. (2013). DEVELOPMENT OF OPTIMAL BIDDING STRATEGIES USING NEW AGGREGATED DEMAND MODEL AND HYBRID TECHNIQUE. Journal of Theoretical and Applied Information Technology, Vol. 54, No. 3, 474-486. Rosenm¨uller, J. (1971). On a generalization of the Lemke-Howson algorithm to non co-operative n-person games. SIAM Journal on Applied Mathematics, 80-87. Sahraei-Ardakani, M., & Rahimi-Kian, A. (2009). A dynamic replicator model of the players’ bids in an oligopolistic electricity market. Electric Power Systems Research, 79(5): 781-8. Satyaramesh, P. (2014). A Bidding Methodology by Nash Equilibrium for Finite Generators Participating in Imperfect Electricity Markets. The Institution of Engineers (India), 95(1): 1-14. Sen, S., Yu, L., & Genc, T. (2006). A stochastic programming approach to power portfolio optimization. Operation Research, 54(1):55-72. Shahidehpour, M., Yamin, H., & Li, Z. (2002). Market operation in electric power systems. New York: Wiley. Sheble, G. (2001). Economically destabilizing electric power markets for profit. IEEE Power Engineering Society, (pp. 1: 50-4). Sheffrin, A. (2004). Predicting market power using the residual supply index. FERC Market Monitoring Workshop, (p. 2002). Sioshansi, R., & Oren, S. (2007). How good are supply function equilibrium models: an empirical analysis of the ERCOT balancing market. Journal of Regulatory Economics, 31(1): 1-35. Soleymani, S., Ranjbar, A., & Shirani, A. (2008). Strategic bidding of generating units in competitive electricity market with considering their reliability. International Journal of Electrical Power & Energy Systems, 30(3): 193-201. Song, H., Liu, C., & Lawarree, J. (1999). Decision making of an electricity suppliers bid in a spot market. proceedings of IEEE power engineering society summer meeting, (pp. Vol. 1, 692-696). Song, H., Liu, C.-C., & Lawarrée, J. (2002). Nash Equilibrium Bidding Strategies in a Bilateral Electricity Market. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 17, NO. 1, 73-80. Spall, J. (2003). Retrieved from Wiley, Introduction to stochastic search and optimization: http://www.jhuapl.edu/ISSO Strback, G., & kirschen, D. (1999). Assessing the competetiveness demand-side bidding. IEEE transaction on power systems, Vol. 14, No.1, 120-125. Sueyoshi, T. (2009). An agent-based approach equipped with game theory: strategic collaboration among learning agents during a dynamic market change in the California electricity crisis. Retrieved from Energy Economics: http://dx.doi.org/10.1016/j.eneco.2009.12.004 Sutton, R., & Barto, A. (1998). Reinforcement Learning: An introduction. Cambridge, MA: MIT Press. Swider, D. J., & Weber, C. (2007). Bidding under price uncertainty in multi-unit pay-as-bid procurement auctions for power systems reserve. European Journal of Operational Research, 181, 1297–1308. Tamaschke, R., Docwra, G., & Stillman, R. (2005). Measuring market power in electricity generation: a long-term perspective using a programming model. Energy Economics, 27(2): 317-35. Tesfatsion, L. (2002). Agent-based computational economics: growing economies from the bottom up. Artificial Life, 8(1): 55-82. Tesfatsion, L. (2006). Agent-based computational economics: a constructive approach to economic theory. (pp. 831-880). North-Holland: Handbook of computational economics. Toranji, M., Noghanibehambari, H., Tavassoli, N., & Noghani, F. (2021, 01 13). A Game Theoretic Approach in Bidding Strategy in Iran Wholesale Electricity Market: Does Increasing Steps Matter for Profit Maximizers? Journal of Applied Business and Economics, 22(11), 190-203. doi:https://doi.org/10.33423/jabe.v22i11.3749 Usaola, J., Ravelo, O., Gonzalez, G., Soto, F., Davila, M., & Diaz-Guerra, B. (2004). Benefits for wind energy in electricity markets from using short term wind power prediction tools: a simulation study. Wind Engineering, 28(1): 119-27. Vahidinasab V, J. S. (2010). Normal boundary intersection method for suppliers’ strategic bidding in electricity markets: an environmental/economic approach. Energy Conversion and Management, 51(6):1111-9. Vahidinasab, V., & Jadid, S. (2010). Normal boundary intersection method for suppliers' strategic bidding in electricity markets: an environmental/economic approach. Energy Conversion and Management, 51(6): 1111-9. Valenzuela, J., & Mazumdar, M. (2003). Commitment of electric power generators under stochastic market prices. Operations Research, 51(6):880-93. von der Fehr, N., & Harbord, D. (1993). Spot market competition in the UK electricity industry. The Economic Journal, 103(418): 531-46. Vytelingum, P., Cliff, D., & Jennings, N. (2008). Strategic bidding in continuous double auctions. Artificial Intelligence, 172(14): 1700-29. Wallace, S., & Fleten, S. (2003). Stochastic programming models in energy. Handbooks in operations research and management science, vol. 10. Elsevier;. Wang, J., & zender, J. (2002). Auctioning devisible goods. Economic theory, 19: 673-705. Watkins, C. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cambridge University. weber, J., & Overbye, T. (1999). a two level optimization problem for analysys of market bidding strategies. proceedings of IEEE power engineering society summer meeting, (pp. 682-687). Wen F, D. A. (2001). Optimal bidding strategies and modeling of imperfect. IEEE Transactions on Power, 16(1): 15-21. Wen, F., & David, A. (2001). A genetic algorithm based method for bidding strategy coordination in energy and spinning reserve markets. Artificial Intelligence in Engineering, 1(1): 71-9. Wen, F., & David, A. (2001). Optimal bidding strategies and modeling of imperfect information among competitive generators. IEEE Transactions on Power Systems, 16(1):15-21. Willems, B. (2002). Modeling Cournot competition in an electricity market with transmission constraints. The Energy Journal, 23(3): 95-126. Yamin, H., & Shahidehpour, S. (2003). Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets. Electric Power Systems Research, 68(2): 83-92. Zajac, E. J., & Bazerman, M. H. (1991). Blind spots in industry and competitor analysis: Implications of interfirm (mis)perception for strategic decisions. Academy of management review, 16: 37-56. Zhang, D., Wang, Y., & Luh, P. B. (1999). Optimization Based Bidding Strategies in the Deregulated Market. Power Industry Computer Applications, 1999. PICA'99. Proceedings of the 21st 1999 IEEE International Conference, (pp. 63-68). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/105340 |