Pötscher, Benedikt M. and Preinerstorfer, David (2020): How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?
This is the latest version of this item.
Preview |
PDF
MPRA_paper_110613.pdf Download (748kB) | Preview |
Abstract
We develop theoretical finite-sample results concerning the size of wild bootstrap-based heteroskedasticity robust tests in linear regression models. In particular, these results provide an efficient diagnostic check, which can be used to weed out tests that are unreliable for a given testing problem in the sense that they overreject substantially. This allows us to assess the reliability of a large variety of wild bootstrap-based tests in an extensive numerical study.
Item Type: | MPRA Paper |
---|---|
Original Title: | How Reliable are Bootstrap-based Heteroskedasticity Robust Tests? |
Language: | English |
Keywords: | wild bootstrap-based heteroskedasticity robust tests, size distortions |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables |
Item ID: | 110613 |
Depositing User: | Benedikt Poetscher |
Date Deposited: | 12 Nov 2021 08:07 |
Last Modified: | 12 Nov 2021 08:07 |
References: | Bates, D. and Eddelbuettel, D. (2013). Fast and elegant numerical linear algebra using the RcppEigen package. Journal of Statistical Software, 52 1–24. Beran, R. (1986). Discussion: Jackknife, bootstrap and other resampling methods in regression analysis. Annals of Statistics, 14 1295–1298. Chesher, A. and Jewitt, I. (1987). The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica, 55 1217–1222. Chesher, A. D. (1989). Hájek inequalities, measures of leverage, and the size of heteroskedasticity robust Wald tests. Econometrica, 57 971–977. Chesher, A. D. and Austin, G. (1991). The finite-sample distributions of heteroskedasticity robust wald statistics. Journal of Econometrics, 47 153–173. Cragg, J. G. (1983). More efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica, 51 751–763. Cragg, J. G. (1992). Quasi-Aitken estimation for heteroscedasticity of unknown form. Journal of Econometrics, 54 179–201. Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 45 215 – 233. Cribari-Neto, F. and Lima, M. d. G. A. (2009). Heteroskedasticity-consistent interval estimators. Journal of Statistical Computation and Simulation, 79 787–803. Davidson, R. and Flachaire, E. (2008). The wild bootstrap, tamed at last. Journal of Econometrics, 146 162–169. Davidson, R. and MacKinnon, J. G. (1985). Heteroskedasticity-robust tests in regressions directions. Ann. I.N.S.É.É. 183–218. DiCiccio, C. J., Romano, J. P. and Wolf, M. (2019). Improving weighted least squares inference. Econometrics and Statistics, 10 96–119. Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Annals of Mathematical Statistics, 34 447–456. Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66). Univ. California Press, Berkeley, Calif., Vol. I: Statistics, pp. 59–82. Flachaire, E. (1999). A better way to bootstrap pairs. Economics Letters, 64 257–262. Flachaire, E. (2005a). Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap. Computational Statistics & Data Analysis, 49 361–376. Flachaire, E. (2005b). More efficient tests robust to heteroskedasticity of unknown form. Econometric Reviews, 24 219–241. Godfrey, L. G. (2006). Tests for regression models with heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 50 2715–2733. Godfrey, L. G. and Orme, C. D. (2004). Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients. Economics Letters, 82 281–287. Hinkley, D. V. (1977). Jackknifing in unbalanced situations. Technometrics, 19 285–292. Horowitz, J. L. (1997). Bootstrap methods in econometrics: theory and numerical performance. In Advances in Economics and Econometrics: Theory and Applications: Seventh World Congress (D. M. Kreps and K. F. Wallis, eds.), vol. 3 of Econometric Society Monographs. Cambridge University Press, 188–222. Imbens, G. W. and Kolesár, M. (2016). Robust standard errors in small samples: Some practical advice. The Review of Economics and Statistics, 98 701–712. Lin, E. S. and Chou, T.-S. (2018). Finite-sample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form. Econometric Reviews, 37 1–28. Liu, R. Y. (1988). Bootstrap procedures under some non-i.i.d. models. Annals of Statistics, 16 1696–1708. Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54 217–224. MacKinnon, J. G. (2013). Thirty years of heteroskedasticity-robust inference. In Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis (X. Chen and N. R. E. Swanson, eds.). Springer, 437–462. MacKinnon, J. G. and White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29 305-325. Mammen, E. (1993). Bootstrap and wild bootstrap for high-dimensional linear models. Annals of Statistics, 21 255–285. Pötscher, B. M. and Preinerstorfer, D. (2018). Controlling the size of autocorrelation robust tests. Journal of Econometrics, 207 406–431. Pötscher, B. M. and Preinerstorfer, D. (2021). Valid heteroskedasticity robust testing. Working paper. Preinerstorfer, D. (2020). wbsd: wild bootstrap size diagnostics, version 1.0.0. Preinerstorfer, D. and Pötscher, B. M. (2016). On size and power of heteroskedasticity and autocorrelation robust tests. Econometric Theory, 32 261–358. R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Richard, P. (2017). Robust heteroskedasticity-robust tests. Economics Letters, 159 28–32. Robinson, G. (1979). Conditional properties of statistical procedures. Annals of Statistics, 7 742–755. Romano, J. P. and Wolf, M. (2017). Resurrecting weighted least squares. Journal of Econometrics, 197 1–19. Rothenberg, T. J. (1988). Approximate power functions for some robust tests of regression coefficients. Econometrica, 56 997–1019. van Giersbergen, N. P. A. and Kiviet, J. F. (2002). How to implement the bootstrap in static or stable dynamic regression models: test statistic versus confidence region approach. Journal of Econometrics, 108 133–156. White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48 817–838. Wu, C.-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Annals of Statistics, 14 1261–1350. With discussion and a rejoinder by the author. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/110613 |
Available Versions of this Item
-
How Reliable are Bootstrap-based Heteroskedasticity Robust Tests? (deposited 10 May 2020 15:38)
- How Reliable are Bootstrap-based Heteroskedasticity Robust Tests? (deposited 12 Nov 2021 08:07) [Currently Displayed]