Drugeon, Jean-Pierre and Ha-Huy, Thai (2021): An $\alpha-$MaxMin Axiomatisation of Temporally-Biased Multiple Discounts.
Preview |
PDF
MPRA_paper_111306.pdf Download (233kB) | Preview |
Abstract
This article completes an axiomatic approach of utilities streams. The approach is more precisely based upon the robust pre-orders that open the scope for $\alpha$-MaxMin representations. A general $T$-steps Temporal Bias axiom is first introduced, that encapsulates stationarity and $1$-step present bias, aka quasi-hyperbolic discounting, as special cases. A detailed characterisation of the sets of probabilities that represent the weights of the future values of the utilities stream is then completed. This is first achieved for the close future pre-order where a generalised picture of present biases in brought into evidence. This is complemented for the distant future pre-order where it proved that, under the same system of axioms, the weights of the tail of the utility stream now correspond to Banach limits, who, in the evaluation of distant future, can be considered as the counterpart of the geometric discount rates in the evaluation of close future. The whole result is eventually given in an explicit $\alpha$-Maxmin representation.
Item Type: | MPRA Paper |
---|---|
Original Title: | An $\alpha-$MaxMin Axiomatisation of Temporally-Biased Multiple Discounts |
Language: | English |
Keywords: | Axiomatisation, Myopia, Multiple Discounts, $\alpha-$MaxMin Citeria, Temporal Biases, Banach Limits, Infinite Dimensional Topologies. |
Subjects: | D - Microeconomics > D9 - Intertemporal Choice > D90 - General |
Item ID: | 111306 |
Depositing User: | Dr Thai Ha-Huy |
Date Deposited: | 04 Jan 2022 12:13 |
Last Modified: | 04 Jan 2022 12:13 |
References: | \bibitem[Amir \& Lindentrauss (1968)]{AML68} \textsc{Amir}, D. \&\ J. \textsc{Lindentrauss} (1968): \emph{The Structure of Weakly Compact Sets in Banach Spaces}, Annals of Mathematics 88, 35-46. \bibitem[de Andrade, Bastianello \& Orrillo (2021)]{dABO21} \textsc{de Andrade, M., L. Bastianello \& J. Orrillo (2021)}: \emph{Future Blindness}, Working Paper. \bibitem[Araujo (1985)]{A85} \textsc{Araujo}, A. (1985): \emph{Lack of Pareto Optimal Allocation in Economies with Finitely Many Commodities: The Need of Impatience.}, Econometrica 53, 455-461, 1985. \bibitem[Bich, Dong \& Wigniolle (2021)]{BDW21} \textsc{Bich}, P., X.B. \textsc{Dong} \& B. \textsc{Wigniolle} (2021). \emph{On Multiple Discount Rates and Present Bias}. \textit{Working paper}. \bibitem[Bastianello (2017)]{B17} \textsc{Bastianello}, L. (2017): \emph{A Topological Approach to Delay Aversion}, Journal of Mathematical Economics 73, 1-12. \bibitem[Bastianello \& Chateauneuf (2016)]{BC16} \textsc{Bastianello}, L. \& A. \textsc{Chateauneuf} (2016): \emph{About Delay Aversion}, Journal of Mathematical Economics 63, 62-77. \bibitem[Bei\ss ner, Lin \& Riedel (2020)]{BLR20} \textsc{Bei\ss ner, P., Q. Lin \& F. Riedel} (2020): \emph{Dynamically Consistent $\alpha$-MaxMin Expected Utility}, Mathematical Finance 30, 1073-1102. \bibitem[Bei\ss ner \& Werner (2021)]{BW21} \textsc{Bei\ss ner, P. \& J. Werner} (2021): \emph{Optimal Allocations with $\alpha$-MEU, CEU \& CPT}, Working Paper. %\bibitem[Benoit \& Ok (2007)]{BO07} %\textsc{Benoit}, J.-P. \& E. \textsc{Ok} (2007). \emph{Delay Aversion,} Theoretical Economics 2: 71-113. \bibitem[Becker \& Boyd (1997)]{BB97} \textsc{Becker}, R.A. \& J. H. \textsc{Boyd} (1997). \emph{Capital Theory, Equilibrium Analysis an Recursive Utility.} Blackwell. %\bibitem[Bewley (1972)]{B72} %\textsc{Bewley}, T.F. (1972): \emph{Existence of Equilibria in Economies with Infinitely Many Commodities,} Journal of Economic Theory 4: 521-540. \bibitem[Bhaskara Rao \& Bhaskara Rao (1983)]{BRBR83} \textsc{Bhaskara} \textsc{Rao}, K.P.S. \& M. \textsc{Bhaskara} \textsc{Rao} (1983): \textit{Theory of Charges.} Academic Press. \bibitem[Bleichrodt, Rohde \& Wakker (2008)]{BRW08} \textsc{Bleichrodt}, H., K. \textsc{Rohde} \& P. \textsc{Wakker} (2008): \textit{Koopmans' constant discounting for intertemporal choice: a simplification and a generalisation,} {Journal of Mathematical Psychology} 52, 341-347. \bibitem[Brown \& Lewis (1981)]{BL81} \textsc{Brown}, D. \&\ L. \textsc{Lewis} (1981): \emph{Myopic Economic Agents}, Econometrica 49, 369-268. \bibitem[Chakraborty (2017)]{C17} \textsc{Chakraborty}, A. (2017): \emph{Present Bias}, Working Paper. \bibitem[Chateauneuf, Maccheroni, Marinacci \& Tallon (2005)]{CMMT05} \textsc{Chateauneuf}, A., F. \textsc{Maccheroni}, M. \textsc{Marinacci} \& J.-M. \textsc{Tallon} (2005): \emph{Monotone Continuous Multiple Priors}, Economic Theory 26, 973-82. \bibitem[Chateauneuf, Qu, Vergopoulos \& Ventura (2021)]{CQVV21} \textsc{Chateauneuf, A., X. Qu, C. Ventura \& V. Vergopoulos} (2021): \emph{On the Falsifiability of $\alpha$-MaxMin}, Working Paper. %\bibitem[Chichilnisky (1996)]{C96} %\textsc{Chichilnisky}, G. (1996): \textit{An Axiomatic Approach to Sustainable Development.} {Social Choice \& Welfare} 13: 231-257, 1996. \bibitem[Chambers \& Echenique (2018)]{CE18} \textsc{Chambers}, C. \&\ F. \textsc{Echenique} (2018): \newblock \textit{On multiple discount rates}, {Econometrica} 86, 1325-1346. \bibitem[Dolmas (1995)]{D95} \textsc{Dolmas}, J. (1995): \textit{{Time-additive Representations of Preferences when Consumption grows without Bound},} {Economic Letters} 47, 317-325. %\bibitem{DHH18} Drugeon, J.-P. \& Thai Ha-Huy \textit{{Towards a Decomposition for the Future: Closeness, Distantness and Temporal Biases},} PSE Working Paper , 2018. \bibitem[Drugeon \& Ha-Huy (2018)]{DHH18} \textsc{Drugeon}, J.-P. \& T. \textsc{Ha-Huy} (2018): \textit{A not so Myopic Axiomatisation of Discounting}, Paris School of Economics Working Paper. \bibitem[Drugeon \& Ha-Huy (2021a)]{DHH21a} \textsc{Drugeon}, J.-P. \& T. \textsc{Ha-Huy} (2021a): \textit{A not so Myopic Axiomatisation of Discounting}, Economic Theory, https://doi.org/10.1007/s00199-020-01336-3. \bibitem[Drugeon \& Ha-Huy (2021b)]{DHH21b} \textsc{Drugeon}, J.-P. \& T. \textsc{Ha-Huy} (2021b): \textit{On Multiple Discount Rates with Recursive Time-Dependent Orders}, Working Paper. %\bibitem[Fishburn (1970)]{F70} %\textsc{Fishburn}, P. \emph{ Utility Theory for Decision Making}. John Wiley Editors, 1970. \bibitem[Fishburn \& Rubinstein (1982)]{FR83} \textsc{Fishburn}, P. \& A. \textsc{Rubinstein} (1982): \textit{Time Preference}, {International Economic Review} 23, 677-694. \bibitem[Frick, Iijima \& Le Yaouanq (2021)]{FILY21} \textsc{Frick, M., R. Iijima \& Y. Le Yaouanq} (2021): \textit{Objective Rationality Foundations for (Dynamic) $\alpha$-MEU}, {Working Paper} to appear in \emph{Journal of Economic Theory}. %\bibitem[Gabaix \& Laibson (2017)]{GL17} %\textsc{Gabaix}, X. \&\ D.\ \textsc{Laibson} (2017): \textit{Myopia \& Discounting}, {Working Paper}. \bibitem[Ghirardato, Maccheroni \& Marinacci (2004)]{GMM04} \textsc{Ghirardato},\ P., F. \textsc{Maccheroni} \&\ M. \textsc{Marinacci} (2004): \newblock \textit{Differentiating Ambiguity and Ambiguity Attitude}, \newblock {Journal of Economic Theory} {118}, 133-173. \bibitem[Gilboa \& Schmeidler (1989)]{GS89} \textsc{Gilboa}, I. \&\ D. \textsc{Schmeidler} (1989): \newblock \textit{MaxMin expected utility with non-unique prior,} \newblock {Journal of Mathematical Economics} 18, 141-153. \bibitem[Gilles (1989)]{G89} \textsc{Gilles}, C. (1989): \emph{Charges as Equilibrium prices and Asset Bubbles,} Journal of Mathematical Economics 18, 155-167. \bibitem[Hurwicz (1951)]{H51} \textsc{Hurwicz, L.} (1951): \emph{Some Specification Problems and Applications to Econometric Models}, Econometrica 19, 343-344. %\bibitem[Kahn \& Stinchcombe (2017)]{KS17} %\textsc{Kahn}, U. \& M. \textsc{Stinchcombe} (2017): \emph{Planning for the Long Run: Programming with Patient, Pareto Responsive Preferences}, %Working paper. \bibitem[Koopmans (1960)]{K60} \textsc{Koopmans}, T.J. (1960): \textit{Stationary Ordinal Utility and Impatience}, {Econometrica} 28, 287-309. \bibitem[Koopmans (1972)]{K72} \textsc{Koopmans}, T.J. (1972): T.J. Representation of Preference Orderings over Time. In: \textsl{Decision and Organisation.} McGuire, C. and R.\ Radner, eds.\ Amsterdam: North-Holland. \bibitem[Kopylov (2003)]{K03} \textsc{Kopylov}, I. (2003): \textit{$\alpha$-MaxMin Expected Utility}, Working Paper. %\bibitem[Lapied \& Renault (2013)]{LR13} %\textsc{Lapied}, A. \& O. \textsc{Renault} (2013): \textit{How do People Discount the Very Distant Future?,} {Working Paper}. \bibitem[Laibson (1997)]{L97} {\textsc{L{aibson}}, D.} (1997): \emph{Golden Eggs and Hyperbolic Discounting,} Quarterly Journal of Economics 112, 443-478. \bibitem[Lauwers (2014)]{L14} \textsc{Lauwers}, L. (2014) \textit{The Axiomatic Approach to the Ranking of Infinite Utility Streams}, {Working Paper}. \bibitem[Marinacci (1998)]{M98} \textsc{Marinacci}, M. (1998): \emph{An Axiomatic Approach to Complete Patience and Time Invariance}, Journal of Economic Theory 83, 105-144. \bibitem[Montiel Olea \& Strzalecki (2014)]{MOS14} \textsc{Montiel} \textsc{Olea} J. L. \&\ T. \textsc{Strzalecki} (2014): \emph{Axiomatisation and Measurement of Quasi-Hyperbolic discounting}, Quartely Journal of Economics, 1449-1499. \bibitem[Ok \& Masatlioglu (2008)]{OM08} \textsc{Ok}, E. \&\ Y. \textsc{Masatlioglu} (2008): \textit{A Theory of (Relative) Discounting}, {Journal of Economic Theory} 137, 214-245. \bibitem[Phelps \& Pollack (1968)]{PP68} \textsc{Phelps}, P. \& R. \textsc{Pollack} (1968): \emph{On Second-best National Saving and Game-Equilibrium Growth,} Review of Economics Studies 35, 185-199. %\bibitem{SL1989} N. Stokey and R. Lucas: \newblock Recursive methods in %economic dynamics. % \bibitem[Sawyer (1988)]{S88} \textsc{Sawyer}, C. (1988): \textit{Stationary Recursive Preferences: Myopia and Impatience Reconsidered---the Many Goods Case}, {Working Paper}. \bibitem[Trautmann \& van de Kuilen (2015)]{TVDK15} \textsc{Trautman, S.T., \& G. van de Kuilen (2015)}: \emph{Ambiguity Attitudes}, The Wiley Blackwell Handbook of Judgment and Decision Making 2, 89-116 \bibitem[Wakai (2007)]{W07} \textsc{Wakai},T. (2007): \newblock \textit{A Model of Utility Smoothing}, {Econometrica} 73,\ 157-63, 2007. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/111306 |