Drugeon, Jean-Pierre and Ha-Huy, Thai (2021): On Multiple Discount Rates with Recursive Time-Dependent Orders.
Preview |
PDF
MPRA_paper_111308.pdf Download (345kB) | Preview |
Abstract
This study adresses time-dependent orders that are shown to lead to recursive representations based upon a Max-Min dichotomy and introduce a structure that is naturally based upon time-varying multiple discounts. It is argued that this setup naturally provides an enriched understanding of the much discussed present biases. It is established how a multiple discounts version of \emph{present biais} becomes available and directly builds upon the features of the order defined from the head of the utilities sequence.
Item Type: | MPRA Paper |
---|---|
Original Title: | On Multiple Discount Rates with Recursive Time-Dependent Orders |
Language: | English |
Keywords: | Axiomatization, Time-Dependent Orders, Time-Varying Multiple Discounts, Multiple Present Biases. |
Subjects: | D - Microeconomics > D9 - Intertemporal Choice D - Microeconomics > D9 - Intertemporal Choice > D90 - General D - Microeconomics > D9 - Intertemporal Choice > D91 - Intertemporal Household Choice ; Life Cycle Models and Saving |
Item ID: | 111308 |
Depositing User: | Dr Thai Ha-Huy |
Date Deposited: | 04 Jan 2022 12:13 |
Last Modified: | 04 Jan 2022 12:13 |
References: | \bibitem{BBB2021} \textsc{Bich}, P., X.B. \textsc{Dong} \& B. \textsc{Wigniolle} (2021). \emph{On Multiple Discount Rates and Present Bias}. \textit{Working paper}. %\bibitem{B17} Bastianello, L. \emph{A Topological Approach to Delay Aversion}, Journal of Mathematical Economics 73: 1-12, 2017. %\bibitem{BRW08} Bleichrodt, H., K. Rohde \& P. Wakker. Koopmans' constant discounting for intertemporal choice: a simplification and a generalization. \emph{Journal of Mathematical Psychology} 52: 341-347, 2008. \bibitem{BL81} Brown, D. \& L. Lewis: Myopic Economic Agents, \emph{Econometrica} {49}: 369-268, 1981. \bibitem{C17} Chakraborty, A.: \emph{Present Bias}. Working paper, 2017. \bibitem{CE18} Chambers, C. \& F. Echenique: On Multiple Discount Rates, \emph{Econometrica} {86}: 1325-1346, 2018. %\bibitem{D95} Dolmas, J.: {Time-additive Representations of Preferences when Consumption grows without Bound}. \emph{Economic Letters} 47: 317-325, 1994. \bibitem{DHH20} Drugeon, J.-P. \& T. Ha-Huy: {A not so Myopic Axiomatisation of Discounting}, \textit{Economic Theory}, 2020. \bibitem{DHHN19} Drugeon, J.-P., T. Ha-Huy \& T.D.H. Nguyen: On Maximin Dynamic Programming \& the Rate of Discount. \emph{Economic Theory} 67: 703-729, 2019. \bibitem{FR82} Fishburn, P. \& A. Rubinstein: Time Preference. \emph{International Economic Review} 23: 677-694, 1982. \bibitem{FLOD02} Frederick,S., G. Loewenstein \& T O'Donoghue: {Time Discounting and Time Preference: A Critical Review}. \emph{Journal of Economic Literature} 40: 351-401, 2002. %\bibitem{DHH2018} Drugeon J.P. and T. Ha-Huy: A Not So Myopic Axiomatization of Discounting. \emph{Working paper}, 2018. \bibitem{GMM04} Ghirardato,\ P., F. Maccheroni \& M. Marinacci: Differentiating ambiguity and ambiguity attitude. \emph{Journal of Economic Theory} {{118}}: 133-173, 2004. \bibitem{GS89} Gilboa, I. \& D. Schmeidler: Maximin Expected Utility with Non-Unique Prior, \emph{Journal of Mathematical Economics} {18}: 141-153, 1989. %\bibitem{G89} Gilles C. \emph{Charges as Equilibrium prices and Asset Bubbles}. Journal of Mathematical Economics 18: 155-167, 1989. \bibitem{K60} Koopmans, T. J.: Stationary Ordinal Utility and Impatience, \emph{Econometrica} {28}: 287-309, 1960. %\bibitem{K72} Koopmans, T.J.: Representation of Preference Orderings over Time. In: %\textsl{Decision and Organisation.} McGuire, C. and R.\ Radner, eds.\ Amsterdam: North-Holland, 1972. \bibitem{L97}{L{aibson}, D.}: {Golden Eggs and Hyperbolic Discounting.} \emph{Quarterly Journal of Economics} 112: 443-478, 1997. %\bibitem{L14} Lauwers, L.: The Axiomatic Approach to the Ranking of Infinite Utility Streams. \textit{Working Paper}, 2014. \bibitem{MOS14} Montiel Olea J. L. and T. Strzalecki: {Axiomatization and Measurement of Quasi-Hyperbolic discounting}. \emph{Quarterly Journal of Economics} 129: 1449-1499, 2014. %\bibitem{OM08} Ok, E. and Y. Masatlioglu: A Theory of (Relative) Discounting. \emph{Journal of Economic Theory} 137: 214-245, 2007. \bibitem{PP68}{P{helps}, P., \& R. P{ollack}}: {On Second-best National Saving and Game-Equilibrium Growth.} \emph{Review of Economics Studies} 35: 185-199, 1968. %\bibitem{SL1989} N. Stokey and R. Lucas: \newblock Recursive methods in %economic dynamics. % \bibitem{W07} Wakai,T.: \newblock {A Model of Utility Smoothing}, \emph{Econometrica} 73:\ 157-63, 2007. %\bibitem{W07} Wakai,T.: \newblock A Model of Utility Smoothing. \emph{Econometrica} 73:\ 157-63, 2007. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/111308 |