Gerling, Charlotte and Schöttker, Oliver and Hearne, John (2022): Irreversible and partly reversible investments in the optimal reserve design problem: the role of flexibility under climate change.
Preview |
PDF
MPRA_paper_112089.pdf Download (362kB) | Preview |
Abstract
Climate change causes range shifts of species and habitats, thus making existing reserve networks less suitable in the future. In principle, reserve networks may be adapted to climate change in two ways: by providing additional funds and / or by allowing for the sale of sites to liquidate funds for new purchases. However, due to general negative ecological consequences, selling is often strongly regulated, thus rendering the optimal reserve design a problem of irreversible investment decisions. On the other hand, allowing for sale may be interpreted as an investment with costly reversibility, as involved transaction costs do not allow for full recovery of the initial investment. Whether allowing for the sale of sites to increase flexibility under climate change outweighs the costs of this increased flexibility remains an open question. We develop a conceptual climate-ecological-economic model to find the optimal solution for the reserve design problem under changing climatic conditions and different policy scenarios. These scenarios differ in terms of whether and when additional funds are provided, and whether selling of reserve sites is allowed. Our results show that the advantage of allowing for sales is large when no additional funds are available and decreases as the amount of additional capital provided for adaptation increases. Finally, providing a one-off payment initially instead of regular payments throughout the runtime of the model leads to higher habitat protection.
Item Type: | MPRA Paper |
---|---|
Original Title: | Irreversible and partly reversible investments in the optimal reserve design problem: the role of flexibility under climate change |
Language: | English |
Keywords: | Biodiversity conservation; conservation planning; climate adaptation; climate-ecological-economic modelling; ecological-economic modelling; habitat conservation; irreversible investment; investment of costly reversibility; RD-problem; selling reserve sites |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics ; Industrial Ecology Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q58 - Government Policy |
Item ID: | 112089 |
Depositing User: | Oliver Schöttker |
Date Deposited: | 25 Feb 2022 07:56 |
Last Modified: | 25 Feb 2022 07:56 |
References: | Abel, A. B. and Eberly, J. C. (1996). Optimal investment with costly reversibility. The Review of Economic Studies, 63(4):581–593. Alagador, D. and Cerdeira, J. O. (2020). Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate–change–concerned conservation plans effective. Methods in Ecology and Evolution, 11(10):1325–1337. Alagador, D. and Cerdeira, J. O. (2021). Operations research and cost-effective spatial conservation planning: Data, models, tools and future directions. Preprints 2021. Alagador, D., Cerdeira, J. O., and Aráujo, M. B. (2014). Shifting protected areas: scheduling spatial priorities under climate change. Journal of Applied Ecology, 51(3):703–713. Alagador, D., Cerdeira, J. O., and Aráujo, M. B. (2016). Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods in Ecology and Evolution, 7(7):853–866. Ando, A. W., Camm, J., Polasky, S., and Solow, A. (1998). Species distributions, land values, and efficient conservation. Science, 279(5359):2126–2128. Ando, A. W. and Hannah, L. (2011). Lessons from finance for new land-conservation strategies given climate-change uncertainty. Conservation Biology, 25(2):412–414. Arafeh-Dalmau, N., Brito-Morales, I., Schoeman, D. S., Possingham, H. P., Klein, C. J., and Richardson, A. J. (2020). Incorporating climate velocity into the design of climate-smart networks of protected areas. bioRxiv. Arrow, K. J. (1968). Optimal capital policy with irreversible investment. InWolfe, J. N., editor, Value, Capital and Growth, Papers in Honour of Sir John Hicks, pages 1–19. Edinburgh University Press, Edinburgh. Arrow, K. J. and Fisher, A. C. (1974). Environmental preservation, uncertainty, and irreversibility. The Quarterly Journal of Economics, 88(2):312. Baldwin, C. Y. (1982). Optimal sequential investment when capital is not readily reversible. The Journal of Finance, 37(3):763–782. Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98. Brunette, M., Costa, S., and Lecocq, F. (2014). Economics of species change subject to risk of climate change and increasing information: a (quasi-)option value analysis. Annals of Forest Science, 71(2):279–290. Brunette, M., Hanewinkel, M., and Yousefpour, R. (2020). Risk aversion hinders forestry professionals to adapt to climate change. Climatic Change, 162(4):2157–2180. Campos-Cerqueira, M., Terando, A. J., Murray, B. A., Collazo, J. A., and Aide, T. M. (2021). Climate change is creating a mismatch between protected areas and suitable habitats for frogs and birds in Puerto Rico. Biodiversity and Conservation, 30(12):3509–3528. Church, R. L., Stoms, D. M., and Davis, F. W. (1996). Reserve selection as a maximal covering location problem. Biological Conservation, 76(2):105–112. Costanza, R. and Voinov, A. (2001). Modeling ecological and economic systems with stella: Part iii. Ecological Modelling, 143(1-2):1–7. Costello, C. and Polasky, S. (2004). Dynamic reserve site selection. Resource and Energy Economics, 26(2):157–174. Creutzburg, M. K., Henderson, E. B., and Conklin, D. R. (2015). Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon. AIMS Environmental Science, 2(2):203–236. Dasgupta, P. (2021). The Economics of Biodiversity: The Dasgupta Review. Technical report, HM Treasury, London. Davis, G. A. and Cairns, R. D. (2017). The odd notion of “reversible investment”. Journal of Banking & Finance, 81:172–180. Drechsler, M. (2020a). Conservation management in the face of climatic uncertainty – the roles of flexibility and robustness. Ecological Complexity, 43:100849. Drechsler, M. (2020b). Ecological-economic Modelling for Biodiversity Bonservation. Ecology, Biodiversity and Conservation. Cambridge University Press, Cambridge. Drechsler, M. and Hartig, F. (2011). Conserving biodiversity with tradable permits under changing conservation costs and habitat restoration time lags. Ecological Economics, 70(3):533–541. Drechsler, M. and Johst, K. (2010). Rapid viability analysis for metapopulations in dynamic habitat networks. Proceedings of the Royal Society B: Biological Sciences, 277(1689):1889–1897. Drechsler, M. and Johst, K. (2017). Rapid assessment of metapopulation viability under climate and land-use change. Ecological Complexity, 31:125–134. Drechsler, M. and Wätzold, F. (2020). Biodiversity conservation in a dynamic world may lead to inefficiencies due to lock-in effects and path dependence. Ecological Economics, 173:106652. Drechsler, M., Wätzold, F., and Grimm, V. (2022). The hitchhiker’s guide to generic ecologicaleconomic modelling of land-use-based biodiversity conservation policies. Ecological Modelling, 465:109861. Duke, J. M., Dundas, S. J., Johnston, R. J., and Messer, K. D. (2014). Prioritizing payment for environmental services: Using nonmarket benefits and costs for optimal selection. Ecological Economics, 105:319–329. Dunning, I., Huchette, J., and Lubin, M. (2017). Jump: A modeling language for mathematical optimization. SIAM Review, 59(2):295–320. Evans, T. G., Diamond, S. E., and Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology, 3(1):cov056. Fuller, R. A., McDonald-Madden, E., Wilson, K. A., Carwardine, J., Grantham, H. S., Watson, J. E. M., Klein, C. J., Green, D. C., and Possingham, H. P. (2010). Replacing underperforming protected areas achieves better conservation outcomes. Nature, 466(7304):365–367. Fung, E., Imbach, P., Corrales, L., Vilchez, S., Zamora, N., Argotty, F., Hannah, L., and Ramos, Z. (2017). Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems. Climatic Change, 141(1):77–92. Gerling, C., Drechsler, M., Keuler, K., Leins, J. A., Radtke, K., Schulz, B., Sturm, A., and Wätzold, F. (2022). Climate-ecological-economic modelling for the cost-effective spatio-temporal allocation of conservation measures in cultural landscapes facing climate change. Q Open. Gerling, C. and Wätzold, F. (2021). An economic evaluation framework for land–use–based conservation policy instruments in a changing climate. Conservation Biology, 35(3):824–833. Graham, V., Baumgartner, J. B., Beaumont, L. J., Esper´on-Rodr´ıguez, M., and Grech, A. (2019). Prioritizing the protection of climate refugia: designing a climate-ready protected area network. Journal of Environmental Planning and Management, 62(14):2588–2606. Gray, L. (2003). A mathematician looks at Wolfram’s new kind of science. Notices-American Mathematical Society, 50(2):200–211. Grimm, V., Johnston, A. S. A., Thulke, H.-H., Forbes, V. E., and Thorbek, P. (2020). Three questions to ask before using model outputs for decision support. Nature Communications, 11(1):4959. Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual. Hamaide, B., Albers, H. J., and Busby, G. (2014). Backup coverage models in nature reserve site selection with spatial spread risk heterogeneity. Socio-Economic Planning Sciences, 48(2):158–167. Hannah, L., Midgley, G. F., and Millar, D. (2002). Climate change-integrated conservation strategies. Global Ecology and Biogeography, 11(6):485–495. Hardy, M. J., Fitzsimons, J. A., Bekessy, S. A., and Gordon, A. (2018). Purchase, protect, resell, repeat: an effective process for conserving biodiversity on private land? Frontiers in Ecology and the Environment, 16(6):336–344. Hartman, R. and Hendrickson, M. (2002). Optimal partially reversible investment. Journal of Economic Dynamics and Control, 26(3):483–508. Heller, N. E. and Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation, 142(1):14–32. Hily, E.,Wätzold, F., and Drechsler, M. (2017). Cost-effectiveness of conservation payment schemes under climate change. Working Papers Cahiers du LEF 2017-01, Laboratoire d’Economie Forestiere, AgroParisTech-INRA. Jafari, N. and Hearne, J. (2013). A new method to solve the fully connected reserve network design problem. European Journal of Operational Research, 231(1):202–209. Jafari, N., Nuse, B. L., Moore, C. T., Dilkina, B., and Hepinstall-Cymerman, J. (2017). Achieving full connectivity of sites in the multiperiod reserve network design problem. Computers & Operations Research, 81:119–127. Johst, K., Drechsler, M., and Wätzold, F. (2002). An ecological-economic modelling procedure to design compensation payments for the efficient spatio-temporal allocation of species protection measures. Ecological Economics, 41(1):37–49. Lachaud, M. A., Bravo-Ureta, B. E., and Ludena, C. E. (2021). Economic effects of climate change on agricultural production and productivity in latin america and the caribbean (lac). Agricultural Economics. Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M., and Pauli, H. (2018). Climate change leads to accelerated transformation of high-elevation vegetation in the central alps. The New Phytologist, 220(2):447–459. Lawler, J. J., Rinnan, D. S., Michalak, J. L., Withey, J. C., Randels, C. R., and Possingham, H. P. (2020). Planning for climate change through additions to a national protected area network: implications for cost and configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794):20190117. Lennox, G. D., Fargione, J., Spector, S., Williams, G., and Armsworth, P. R. (2017). The value of flexibility in conservation financing. Conservation Biology, 31(3):666–674. Midgley, G. F., Davies, I. D., Albert, C. H., Altwegg, R., Hannah, L., Hughes, G. O., O’Halloran, L. R., Seo, C., Thorne, J. H., and Thuiller, W. (2010). Biomove - an integrated platform simulating the dynamic response of species to environmental change. Ecography. Montoya, D., Gaba, S., de Mazancourt, C., Bretagnolle, V., and Loreau, M. (2020). Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes. Ecological Modelling, 416. Moore, J. L., Folkmann, M., Balmford, A., Brooks, T., Burgess, N., Rahbek, C., Williams, P. H., and Krarup, J. (2003). Heuristic and optimal solutions for set-covering problems in conservation biology. Ecography, 26(5):595–601. Nath, I. (2020). The Food Problem and the Aggregate Productivity Consequences of Climate Change. Technical report, National Bureau of Economic Research, Cambridge, MA. Pindyck, R. S. (1988). Irreversible investment, capacity choice, and the value of the firm. The American Economic Review, 78:969–985. Polasky, S., Camm, J. D., and Garber-Yonts, B. (2001). Selecting biological reserves cost-effectively: An application to terrestrial vertebrate conservation in oregon. Land Economics, 77(1):68–78. Polasky, S., Nelson, E., Camm, J. D., Csuti, B., Fackler, P., Lonsdorf, E., Montgomery, C., White, D., Arthur, J., Garber-Yonts, B., Haight, R., Kagan, J., Starfield, A., and Tobalske, C. (2008). Where to put things? spatial land management to sustain biodiversity and economic returns. Biological Conservation, 141(6):1505–1524. Polasky, S., Nelson, E., Lonsdorf, E., Fackler, P., and Starfield, A. (2005). Conserving species in a working landscape: Land use with biological and economic objectives. Ecological Applications, 15(4):1387–1401. Polasky, S. and Solow, A. R. (2001). The value of information in reserve site selection. Biodiversity and Conservation, 10(7):1051–1058. Ponce-Reyes, R., Plumptre, A. J., Segan, D., Ayebare, S., Fuller, R. A., Possingham, H. P., and Watson, J. E. (2017). Forecasting ecosystem responses to climate change across Africa’s Albertine Rift. Biological Conservation, 209:464–472. Possingham, H. P., Bode, M., and Klein, C. J. (2015). Optimal conservation outcomes require both restoration and protection. PLoS Biology, 13(1):e1002052. Prober, S. M., Colloff, M. J., Abel, N., Crimp, S., Doherty, M. D., Dunlop, M., Eldridge, D. J., Gorddard, R., Lavorel, S., Metcalfe, D. J., Murphy, H. T., Ryan, P., and Williams, K. J. (2017). Informing climate adaptation pathways in multi-use woodland landscapes using the values-rulesknowledge framework. Agriculture, Ecosystems & Environment, 241:39–53. Pyke, C. R. and Fischer, D. T. (2005). Selection of bioclimatically representative biological reserve systems under climate change. Biological Conservation, 121(3):429–441. R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., and Chatterjee, S. (2019). Climate change has likely already affected global food production. PloS one, 14(5):e0217148. Schöttker, O., Johst, K., Drechsler, M., and Wätzold, F. (2016). Land for biodiversity conservation — to buy or borrow? Ecological Economics, 129:94–103. Schöttker, O. and Wätzold, F. (2018). Buy or lease land? cost-effective conservation of an oligotrophic lake in a natura 2000 area. Biodiversity and Conservation, 27(6):1327–1345. Schöttker, O. and Wätzold, F. (2020). Climate change and the cost-effective governance mode for biodiversity conservation. Working Paper MPRA No. 99049, https://mpra.ub.unimuenchen.de/99049/. Simpson, K., de Vries, F., Dallimer, M., Armsworth, P., and Hanley, N. (2022). Ecological and economic implications of alternative metrics in biodiversity offset markets. Conservation Biology (under review). Snyder, S. A. and Haight, R. G. (2016). Application of the maximal covering location problem to habitat reserve site selection. International Regional Science Review, 39(1):28–47. Strange, N., Thorsen, B. J., and Bladt, J. (2006). Optimal reserve selection in a dynamic world. Biological Conservation, 131(1):33–41. Traeger, C. P. (2014). On option values in environmental and resource economics. Resource and Energy Economics, 37:242–252. van Langevelde, F., Claassen, F., and Schotman, A. (2002). Two strategies for conservation planning in human-dominated landscapes. Landscape and Urban Planning, 58(2-4):281–295. Verbruggen, A. (2013). Revocability and reversibility in societal decision-making. Ecological Economics, 85:20–27. Vincent, C., Fernandes, R. F., Cardoso, A. R., Broennimann, O., Di Cola, V., D’Amen, M., Ursenbacher, S., Schmidt, B. R., Pradervand, J.-N., Pellissier, L., and Guisan, A. (2019). Climate and land-use changes reshuffle politically-weighted priority areas of mountain biodiversity. Global Ecology and Conservation, 17:e00589. Watts, K., Whytock, R. C., Park, K. J., Fuentes-Montemayor, E., Macgregor, N. A., Duffield, S., and McGowan, P. J. K. (2020). Ecological time lags and the journey towards conservation success. Nature Ecology & Evolution, 4(3):304–311. Wätzold, F. (2014). Climate change adaptation and biodiversity conservation: An economic perspective. In Albrecht, E., Schmidt, M., Mißler-Behr, M., and Spyra, S. P. N., editors, Implementing Adaptation Strategies by Legal, Economic and Planning Instruments on Climate Change, pages 187–195. Springer Berlin Heidelberg, Berlin, Heidelberg. Wätzold, F., Drechsler, M., Johst, K., Mewes, M., and Sturm, A. (2016). A novel, spatiotemporally explicit ecological–economic modeling procedure for the design of cost–effective agri–environment schemes to conserve biodiversity. American Journal of Agricultural Economics, 98(2):489–512. Wilson, K. A., Lulow, M., Burger, J., Fang, Y.-C., Andersen, C., Olson, D., O’Connell, M., and McBride, M. F. (2011). Optimal restoration: accounting for space, time and uncertainty. Journal of Applied Ecology, 48(3):715–725. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112089 |
Available Versions of this Item
- Irreversible and partly reversible investments in the optimal reserve design problem: the role of flexibility under climate change. (deposited 25 Feb 2022 07:56) [Currently Displayed]