Pacifico, Antonio (2021): High Dimensional Dynamic Panel with Correlated Random Effects: A Semiparametric Hierarchical Empirical Bayes Approach. Forthcoming in: NA , Vol. NA, No. NA : pp. 1-29.
Preview |
PDF
MPRA_paper_115711.pdf Download (1MB) | Preview |
Abstract
A novel for multivariate dynamic panel data analysis with correlated random effects is proposed when estimating high dimensional parameter spaces. A semiparametric hierarchical Bayesian strategy is used to jointly deal with incidental parameters, endogeneity issues, and model misspecification problems. The underlying methodology involves addressing an \texttt{ad-hoc} model selection based on conjugate informative proper mixture priors to select promising subsets of predictors affecting outcomes. Monte Carlo algorithms are then conducted on the resulting submodels to construct empirical Bayes estimators and investigate ratio-optimality and posterior consistency for forecasting purposes and policy issues. An empirical approach to a large panel of economies is conducted describing the functioning of the model. Simulations based on Monte Carlo designs are also performed to account for relative regrets dealing with cross-sectional heterogeneity.
Item Type: | MPRA Paper |
---|---|
Original Title: | High Dimensional Dynamic Panel with Correlated Random Effects: A Semiparametric Hierarchical Empirical Bayes Approach |
Language: | English |
Keywords: | Multidimensional data; Bayesian Inference; Conditional Forecasting; Incidental Parameters; Tweedie Correction; Multicountry Analysis. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development |
Item ID: | 115711 |
Depositing User: | Dr. Antonio Pacifico |
Date Deposited: | 19 Dec 2022 14:28 |
Last Modified: | 19 Dec 2022 14:28 |
References: | antonio.pacifico86@gmail.com |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/115711 |