Zhukovskiy, Vladislav and Zhukovskaya, Lidia and Mukhina, Yulia and Samsonov, Sergey (2023): Guaranteed Solution For Risk-Neutral Decision Maker: An Analog Of Maximin In Single-Criterion Choice Problem. Published in:
Preview |
PDF
MPRA_paper_119396.pdf Download (623kB) | Preview |
Abstract
In this article single-criterion choice problems under uncertainty (SCPUs) are considered. The principle of minimax regret and the Savage–Niehans risk function are introduced. A possible approach to solving an SCPU for a decision-maker who simultaneously seeks to increase his outcome and reduce his risk ("to kill two birds with one stone") is proposed. The explicit form of such a solution for the linear-quadratic setup of the SCPU is obtained.
Item Type: | MPRA Paper |
---|---|
Original Title: | Guaranteed Solution For Risk-Neutral Decision Maker: An Analog Of Maximin In Single-Criterion Choice Problem |
Language: | English |
Keywords: | guaranteed solution, single-criterion choice, Savage–Niehans risk, minimax regret, uncertainties |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C0 - General > C00 - General C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods |
Item ID: | 119396 |
Depositing User: | Mrs Ekaterina Koroleva |
Date Deposited: | 20 Dec 2023 11:41 |
Last Modified: | 20 Dec 2023 11:41 |
References: | 1. Zhukovskiy, V. I. (2007) Conflicts and Risks. Moscow: Ross. Zaochn. Inst. Tekstil. Legk.Promysh. 2. Zhukovskiy, V. I. (2010) Introduction to Differential Games under Uncertainty. Nash Equilibrium.Moscow: URSS. 3. Zhukovskiy, V. I. (2010) Introduction to Differential Games under Uncertainty. Equilibrium in Threats and Counter-Threats. Moscow: URSS. 4. Zhukovskiy, V. I. (2010) Introduction to Differential Games under Uncertainty. Berge–Vaisman Equilibrium. Moscow: URSS. 5. Zhukovskiy, V. I. (2011) Risks in Conflict Situations. Moscow: URSS, LENAND. 6. Cheremnykh, Y. N. (2008) Microeconomics: Advance Level. Moscow: Info–M. 7. Zhukovskiy, V. I., Kudryavtsev, K. N., Smirnova, L. V. (2013) Guaranteed Solutions of Conflicts and Applications. Moscow: URSS. 8. Zhukovskiy, V. I., Kudryavtsev, K. N. (2017) Mathematical Foundations of the Golden Rule. I. Static Case. Automation and Remote Control. 78 (10). p. 1920–1940. 9. Zhukovskiy, V. I., Kudryavtsev, K. N. (2012) Equilibrating Conflicts and Applications. Moscow: URSS. 10. Zhukovskiy, V. I. and Kudryavtsev, K. N. (2013) Equilibrating Conflicts under Uncertainty. I. Analog of a Saddle–Point. Mat. Teor. Igr Prilozh.. 5 (1). p. 27–44. 11. Zhukovskiy, V. I. and Kudryavtsev, K. N. (2013) Equilibrating Conflicts under Uncertainty. II. Analog of a Maximin. Mat. Teor. Igr Prilozh.. 5 (2). p. 3–45. 12. Markovitz, H. M. (1952) Portfolio Selection. Journal of Finance. 7 (1). p. 77–89. 13. Sirazetdinov, T. K., Sirazetdinov, R. T. (2007) The Problem of Risk and Its Modeling. Problema Chelovecheskogo Riska. 1. p. 31–43. 14. Shakhov, V. V. (1994) Introduction to Insurance. Economic Aspect. Moscow: Finansi i Statistika. 15. Tsvetkova, E. V. and Arlyukova, I. O. (2002) Risks in Economic Activity. St.–Peterburg: Inst. Vneshneekon. Svyav. Ekon. Prav. 16. WALD, A. (1939) Contribution to the Theory of Statistical Estimation and Testing Hypothesis. Annuals Math. Statist.. 10. p. 299–326. 17. Wald, A. (1950) A Statistical Decision Functions. N.Y.: Wiley. 18. Niehans, J. (1951) Zur Preisbildung bei Unterwissen. Schweizerische Zeitschrift Association. 46 (3). p. 55–67. 19. Savage, L. Y. (1951) The theory of Statistical Decision. J. American Statistic Assosiation. 46. p. 55–67. 20. Vatel’, I. A., Ereshko, F. I. (1979) A Game with a Hierarchical Structure. Mathematical Encyclopedia. 2. p. 477–481. 21. Germeier, Y. B. (1971) Introduction to Operation Research. Moscow: Nauka. 22. Germeier, Y. B. (1986) Non–antagonistic Games. Reidel. 23. Kukushkin, I. S., Morozov, V. V. (1984) Theory of Non-Antagonistic Games. Moscow: Mosk. Gos. Univ. 24. Krasovskii, N. N., Subbotin, A. I. (1985) Positional Differential Games. Moscow: Nauka. 25. Krasovskii, N. N. (1985) Control of Dynamic System. Moscow: Nauka. 26. Zhukovskiy, V. I., Kudryavtsev, K. N., Gorbatov, A. S. (2015) The Berge Equilibrium in Cournot Oligopoly Model. Vest. Udmurt. Univ. Ser. Math. Mech. Comp. Sci.. 25 (2). p. 147–156. 27. Morozov, V. V., Sukharev, A. G., Fedorov, V. V. (1986) Operetions Research in Problems and Exercises. Moscow: Vvysshaya Shkola. 28. Podinovskii, V. V., Nogin, V. D. (2007) Pareto Optimal Solutions of Multicriteria Problems. Moscow: Fizmatlit. 29. Zhukovskiy, V. I., Molostvov, V. S., Topchishvili, A. L. (2014) Problem of Multicurrency Deposit Diversification _ Three Possible Approaches to Risk Accounting. International Journal of Operations and Quantitative Management. 20 (1). p. 1–14. 30. Pareto, V. (1909) Manuel d’economie politique. Paris: Geard. 31. Zhukovskiy, V. I., Salukvadze, M. E. (1994) The vector-valued maximin. N.Y. etc: Academic Press. 32. Arrow, K. J., Hurwicz, L., Uzawa, H. (1958) Studies in Linear and Non-linear programming. Stanford Univ. Press. 33. Voevodin, V. V., Kuznetsov, Y. A. (1984) Matrices and Calculations. Moscow: Nauka. 34. Vasil’ev, F. P. (2002) Optimization Methods. Moscow: Faktorial Press. 35. Wentzel, E. S. (1976) Operations Research. Moscow: Znanie. 36. Wentzel, E. S. (1964) Elements of Dynamic Programming. Moscow: Nauka. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/119396 |