Doko Tchatoka, Firmin and Wang, Wenjie (2023): Size-Corrected Wild Bootstrap Tests after Pretesting for Exogeneity with Heteroskedastic or Clustered Data.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_119483.pdf Download (4MB) | Preview |
Abstract
Pretesting for exogeneity has become a routine in many empirical applications involving instrumental variables to decide whether the ordinary least squares or the two-stage least squares (2SLS) method is appropriate. Guggenberger (2010) shows that the second-stage t-test – based on the outcome of a Durbin-Wu-Hausman type pretest for exogeneity in the first stage – has extreme size distortion with asymptotic size equal to 1 when the standard asymptotic critical values are used. In this paper, we first show that both conditional and unconditional on the data, the standard wild bootstrap procedures are invalid for the two-stage testing and a closely related shrinkage method, and therefore are not viable solutions to such size-distortion problem. Then, we propose a novel size-corrected wild bootstrap approach, which combines certain wild bootstrap critical values along with an appropriate size-correction method. We establish uniform validity of this procedure under either conditional heteroskedasticity or clustering in the sense that the resulting tests achieve correct asymptotic size. Monte Carlo simulations confirm our theoretical findings. In particular, our proposed method has remarkable power gains over the standard 2SLS-based t-test in many settings, especially when the identification is not strong.
Item Type: | MPRA Paper |
---|---|
Original Title: | Size-Corrected Wild Bootstrap Tests after Pretesting for Exogeneity with Heteroskedastic or Clustered Data |
Language: | English |
Keywords: | DWH Pretest; Shrinkage; Instrumental Variable; Asymptotic Size; Wild Bootstrap; Bonferroni-based Size-correction; Clustering. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C26 - Instrumental Variables (IV) Estimation |
Item ID: | 119483 |
Depositing User: | Dr. Wenjie Wang |
Date Deposited: | 28 Dec 2023 09:12 |
Last Modified: | 28 Dec 2023 09:12 |
References: | Andrews, D. W., Guggenberger, P., 2009a. Hybrid and size-corrected subsampling methods. Econometrica 77(3), 721–762. Andrews, D. W., Guggenberger, P., 2009b. Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators. Journal of Econometrics 152(1), 19–27. Andrews, D. W., Guggenberger, P., 2010a. Applications of subsampling, hybrid, and size-correction methods. Journal of Econometrics 158(2), 285–305. Andrews, D. W., Guggenberger, P., 2010b. Asymptotic size and a problem with subsampling and with the m out of n bootstrap. Econometric Theory 26(2), 426–468. Andrews, I., Gentzkow, M. , Shapiro, J. M. , 2017. Measuring the sensitivity of parameter estimates to estimation moments. The Quarterly Journal of Economics 132(4), 1553–1592. Andrews, I., Stock, J. H., Sun, L., 2019. Weak instruments in instrumental variables regression: Theory and practice. Annual Review of Economics 11, 727–753. Angrist, J. D., Evans, W. N., 1998. Children and their parents’ labor supply: evidence from exogenous variation in family size. The American Economic Review 88(3), 450–477. Angrist, J. D., Krueger, A. B., 1991. Does compulsory school attendance affect schooling and earning? Quarterly Journal of Economics 106(4), 979–1014. Angrist, J. D. , Lavy, V. , 1999. Using maimonides’ rule to estimate the effect of class size on scholastic achievement. The Quarterly journal of economics 114(2), 533–575. Angrist, J., Kolesár, M., 2023. One instrument to rule them all: The bias and coverage of just-id iv. Journal of Econometrics, forthcoming. Cameron, A. C., Gelbach, J. B., Miller, D. L., 2008. Bootstrap-based improvements for inference with clustered errors. The Review of Economics and Statistics 90(3), 414–427. Cameron, A. C., Miller, D. L., 2015. A practitioner’s guide to cluster-robust inference. Journal of human resources 50(2), 317–372. Cavaliere, G., Georgiev, I., 2020. Inference under random limit bootstrap measures. Econometrica 88(6), 2547–2574. Conley, T. G., Hansen, C. B., Rossi, P. E., 2012. Plausibly exogenous. Review of Economics and Statistics 94(1), 260–272. Davidson, R. , Flachaire, E. , 2008. The wild bootstrap, tamed at last. Journal of Econometrics 146(1), 162–169. Davidson, R., MacKinnon, J. G., 2008. Bootstrap inference in a linear equation estimated by instrumental variables. The Econometrics Journal 11(3), 443–477. Davidson, R., MacKinnon, J. G., 2010. Wild bootstrap tests for iv regression. Journal of Business & Economic Statistics 28(1), 128–144. Djogbenou, A. A., MacKinnon, J. G., Nielsen, M. Ø., 2019. Asymptotic theory and wild bootstrap inference with clustered errors. Journal of Econometrics 212(2), 393–412. Doko Tchatoka, F., 2015. On bootstrap validity for specification tests with weak instruments. The Econometrics Journal 18(1), 137–146. Doko Tchatoka, F., Dufour, J.-M., 2008. Instrument endogeneity and identification-robust tests: some analytical results. Journal of Statistical Planning and Inference 138(9), 2649–2661. Doko Tchatoka, F., Dufour, J.-M., 2014. Identification-robust inference for endogeneity parameters in linear structural models. The Econometrics Journal 17(1), 165–187. Doko Tchatoka, F., Dufour, J.-M., 2018. Instrument endogeneity and identification-robust tests: some analytical results. Journal of Econometrics Forthcoming. Doko Tchatoka, F., Dufour, J.-M., 2020. Exogeneity tests and weak identification in IV regressions: asymptotic theory and point estimation. Technical report, Department of Economics, McGill University Montréal, Canada. Finlay, K., Magnusson, L. M., 2019. Two applications of wild bootstrap methods to improve inference in cluster-iv models. Journal of Applied Econometrics 34(6), 911–933. Gonçalves, S. , White, H. , 2004. Maximum likelihood and the bootstrap for nonlinear dynamic models. Journal of Econometrics 119(1), 199–219. Guggenberger, P. , 2010a. The impact of a hausman pretest on the asymptotic size of a hypothesis test. Econometric Theory 26(2), 369–382. Guggenberger, P., 2010b. The impact of a hausman pretest on the size of a hypothesis test: The panel data case. Journal of Econometrics 156(2), 337–343. Guggenberger, P. , 2012. On the asymptotic size distortion of tests when instruments locally violate the exogeneity assumption. Econometric Theory 28, 387–421. Guggenberger, P., Kumar, G., 2012. On the size distortion of tests after an overidentifying restrictions pretest. Journal of Applied Econometrics 27(7), 1138–1160. Hahn, J., Ham, J., Moon, H. R., 2010. The Hausman test and weak instruments. Journal of Econometrics 160, 289–299. Han, S. , McCloskey, A., 2019. Estimation and inference with a (nearly) singular Jacobian. Quantitative Economics 10(3), 1019–1068. Hansen, B. E., 2005. Challenges for econometric model selection. Econometric Theory 21(1), 60–68. Hansen, B. E., 2017. Stein-like 2sls estimator. Econometric Reviews 36(6-9), 840–852. Hansen, B. E., 2017. Stein-like 2sls estimator. Econometric Reviews 36(6-9), 840–852. Hansen, C., Hausman, J., Newey, W., 2008. Estimation with many instrumental variables. Journal of Business and Economic Statistics 26(4), 398–422. Hansen, B. E., Lee, S., 2019. Asymptotic theory for clustered samples. Journal of econometrics 210(2), 268–290. Kabaila, P., 1995. The effect of model selection on confidence regions and prediction regions. Econometric Theory 11(3), 537–549. Kaffo, M., Wang, W., 2017. On bootstrap validity for specification testing with many weak instruments. Economics Letters 157, 107–111. Keane, M., Neal, T. et al., 2021. A practical guide to weak instruments. Technical report, University of New South Wales. Lee, D. S., McCrary, J., Moreira, M. J., Porter, J., 2022. Valid t-ratio inference for iv. American Economic Review 112(10), 3260–3290. Leeb, H., Pötscher, B. M., 2005. Model selection and inference: Facts and fiction. Econometric Theory 21(1), 21–59. Maasoumi, E., 1978. A modified stein-like estimator for the reduced form coefficients of simultaneous equations. Econometrica, pp. 695–703. MacKinnon, J. G., Nielsen, M. Ø. , Webb, M. D. , 2023. Cluster-robust inference: A guide to empirical practice. Journal of Econometrics 232(2), 272–299. MacKinnon, J. G., Webb, M. D., 2017. Wild bootstrap inference for wildly different cluster sizes. Journal of Applied Econometrics 32(2), 233–254. McCloskey, A., 2017. Bonferroni-based size-correction for nonstandard testing problems. Journal of Econometrics 200(1), 17–35. McCloskey, A., 2020. Asymptotically uniform tests after consistent model selection in the linear regression model. Journal of Business & Economic Statistics 38(4), 810–825. Roodman, D., Nielsen, M. Ø., MacKinnon, J. G., Webb, M. D., 2019. Fast and wild: Bootstrap inference in stata using boottest. The Stata Journal 19(1), 4–60. Staiger, D. , Stock, J. H. , 1997. Instrumental variables regression with weak instruments. Econometrica 65(3), 557–586. Wang, W., 2020. On the inconsistency of nonparametric bootstraps for the subvector anderson–rubin test. Economics Letters 191, 109157. Wang, W., 2021. Wild bootstrap for instrumental variables regression with weak instruments and few clusters. Technical Report No.106227, University Library of Munich, Germany. Wang, W., Doko Tchatoka, F., 2018. On bootstrap inconsistency and bonferroni-based size-correction for the subset anderson–rubin test under conditional homoskedasticity. Journal of Econometrics 207(1), 188–211. Wang, W., Kaffo, M., 2016. Bootstrap inference for instrumental variable models with many weak instruments. Journal of Econometrics 192(1), 231–268. Wang, W., Zhang, Y., 2023. Wild bootstrap for instrumental variables regressions with weak and few clusters. arXiv preprint arXiv:2108.13707. Young, A., 2022. Consistency without inference: Instrumental variables in practical application. European Economic Review 147, 104112. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/119483 |
Available Versions of this Item
-
Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data. (deposited 02 Dec 2021 05:58)
- Size-Corrected Wild Bootstrap Tests after Pretesting for Exogeneity with Heteroskedastic or Clustered Data. (deposited 28 Dec 2023 09:12) [Currently Displayed]