Galychyn, Oleksandr (2022): Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism.
Preview |
PDF
MPRA_paper_121584.pdf Download (16MB) | Preview |
Abstract
The thesis discusses the importance of sustainable urban management, considering the expected increase in urban populations to 70% by 2050. This growth will lead to greater land use and emissions, adversely affecting ecosystems and human health. Sustainable urban management should adopt a systemic perspective, viewing cities as socio-ecological systems with complex interactions between humans and nature. This involves shifting from traditional urban metabolism models to network models that reveal internal city processes. The theoretical framework combines Ecological Economics and Industrial Ecology through network science. A bibliometric analysis of global literature on urban metabolism identified new research areas. The empirical part integrates environmental accounting and network science to assess environmental costs, efficiency, self-sufficiency, and sectoral impacts in urban systems, aligning with Sustainable Development Goals 11 and 12. A case study in Vienna revealed that mining and agriculture receive little investment, with weaknesses in the urban metabolic system's hierarchy, particularly in wholesale, retail, and energy sectors. An emergy-based evaluation highlighted the larger environmental footprint of agricultural products. A multicriteria approach combining input-output and emergy accounting methods is suggested for a comprehensive understanding of socio-ecological interactions, addressing the limitations of single criteria approaches to urban metabolism.
Item Type: | MPRA Paper |
---|---|
Original Title: | Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism |
Language: | English |
Keywords: | input-output analysis, multi-criteria assessment, emergy accounting, ecological network analysis, urban metabolism |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O44 - Environment and Growth Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q2 - Renewable Resources and Conservation > Q21 - Demand and Supply ; Prices Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q51 - Valuation of Environmental Effects Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q56 - Environment and Development ; Environment and Trade ; Sustainability ; Environmental Accounts and Accounting ; Environmental Equity ; Population Growth Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics ; Industrial Ecology Y - Miscellaneous Categories > Y4 - Dissertations (unclassified) > Y40 - Dissertations (unclassified) |
Item ID: | 121584 |
Depositing User: | Dr Oleksandr Galychyn |
Date Deposited: | 19 Aug 2024 18:36 |
Last Modified: | 19 Aug 2024 18:36 |
References: | Afionis, S., Sakai, M., Scott, K., Barrett, J., & Gouldson, A. (2017). Consumption-based carbon accounting: Does it have a future? WIREs Climate Change, 8, e438. https://doi.org/10.1002/wcc.438 Algren, M., Fisher, W., & Landis, A. E. (2021). Machine learning in life cycle assessment. In Data Science Applied to Sustainability Analysis (pp. 167-190). https://doi.org/10.1016/b978-0-12-817976-5.00009-7 Ang, F., & Passel, S. V. (2012). Beyond the environmentalist’s paradox and the debate on weak versus strong sustainability. BioScience, 62(3), 251-259. https://doi.org/10.1525/bio.2012.62.3.6 Annila, A., & Salthe, S. (2009). Economies evolve by energy dispersal. Entropy, 11, 606-633. https://doi.org/10.3390/e11040606 Asamoah, E., Zhang, L., Liang, S., Pang, M., & Tang, S. (2017). Emergy perspectives on the environmental performance and sustainability of small-scale gold production systems in Ghana. Sustainability, 9(11), 2034. https://doi.org/10.3390/su9112034 Awan, U. (2020). Industrial ecology in support of sustainable development goals. In Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., & Wall, T. (Eds.), Responsible Consumption and Production. Springer, Cham. https://doi.org/10.1007/978-3-319-71062-4_18-1 Ayres, R. (1994). Industrial metabolism: Theory and policy. In The Greening of Industrial Ecosystems (pp. 23-37). National Academies Press. Retrieved from Ayres_IndustrialMetabolism.pdf Ayres, R. (2016). Energy, complexity and wealth maximisation. The Frontiers Collection. https://doi.org/10.1007/978-3-319-30545-5 Ayres, R. U. (1998). Eco-thermodynamics: Economics and the second law. Ecological Economics, 26(2), 189-209. https://doi.org/10.1016/s0921-8009(97)00101-8 Ayres, R. U. (2004). On the life cycle metaphor: Where ecology and economics diverge. Ecological Economics, 48(4), 425-438. https://doi.org/10.1016/j.ecolecon.2003.10.018 Ayres, R. U., & Ayres, A. (1978). Resources, environment, and economics: Applications of the materials/energy balance principle. John Wiley & Sons. Ayres, R., Van den Bergh, J., & Gowdy, J. (2001). Strong versus weak sustainability. Environmental Ethics, 23(2), 155-168. https://doi.org/10.5840/enviroethics200123225 Baird, D., Fath, B. D., Ulanowicz, R. E., Asmus, H., & Asmus, R. (2009). On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis. Ecological Modelling, 220(23), 3465-3471. https://doi.org/10.1016/j.ecolmodel.2009.09.008 Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509-512. https://barabasi.com/f/67.pdf Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81, 169-193. https://doi.org/10.1890/10-1510.1 Bascompte, J. (2007). Networks in ecology. Basic and Applied Ecology, 8(6), 485-490. https://doi.org/10.1016/j.baae.2007.06.003 Bastianoni, S., & Marchettini, N. (1997). Emergy/exergy ratio as a measure of the level of organization of systems. Ecological Modelling, 99, 33-40. Basu, S. E., Bale, C., Wehnert, T., & Topp, K. (2019). A complexity approach to defining urban energy systems. Cities, 95, 102358. https://doi.org/10.1016/j.cities.2019.05.027 Berg, M., Hartley, B., & Richters, O. (2015). A stock-flow consistent input–output model with applications to energy price shocks, interest rates, and heat emissions. New Journal of Physics, 17(1), 015011. https://doi.org/10.1088/1367-2630/17/1/015011 Blampied, N. (2021). Economic growth, environmental constraints and convergence: The declining growth premium for developing economies. Ecological Economics, 181, 106919. https://doi.org/10.1016/j.ecolecon.2020.106919 Boriani, E., Esposito, R., Frazzoli, C., Fantke, P., Hald, T., & Rüegg, S. R. (2017). Framework to define structure and boundaries of complex health intervention systems: The ALERT project. Frontiers in Public Health, 5. https://doi.org/10.3389/fpubh.2017.00182 Borrett, S. R., Moody, J., & Edelmann, A. (2014). The rise of network ecology: Maps of the topic diversity and scientific collaboration. Ecological Modelling, 293, 111-127. https://doi.org/10.1016/j.ecolmodel.2014.02.019 Borrett, S. R., Whipple, S. J., Patten, B. C., & Christian, R. R. (2006). Indirect effects and distributed control in ecosystems: Temporal variation of indirect effects in a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis. Ecological Modelling, 194(1-3), 178-188. https://doi.org/10.1016/j.ecolmodel.2005.10.011 Boulding, K. E. (1966). The economics of the coming spaceship earth. In Jarret, H. (Ed.), Environmental Quality in a Growing Economy. Baltimore: John Hopkins University Press. Retrieved from http://arachnid.biosci.utexas.edu/courses/THOC/Readings/Boulding_SpaceshipEarth.pdf Brown, M. T., Campbell, D. E., Ulgiati, S., & Franzese, P. P. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 89-91. https://doi.org/10.1016/j.ecolmodel.2016.09.009 Brown, M. T., & Ulgiati, S. (2004). Emergy analysis and environmental accounting. Encyclopedia of Energy, 2, 329-354. http://dx.doi.org/10.1016/B0-12-176480-X/00242-4 Bunge, M. (1992). System boundary. International Journal of General Systems, 20(3), 215-219. https://doi.org/10.1080/03081079208945031 Buonocore, E., Häyhä, T., Paletto, A., & Franzese, P. P. (2014). Environmental costs and impacts of forestry activities: A multi-method approach to environmental accounting. Ecological Modelling, 271, 10-20. Buriti, R. (2019). “Deep” or “strong” sustainability. In Leal Filho, W., et al. (Eds.), Encyclopedia of Sustainability in Higher Education (pp. 376-385). https://doi.org/10.1007/978-3-030-11352-0_503 Burkett, P. (2006). Marxism and ecological economics. Leiden: Brill, pp. 174-207. Capra, F., & Gunter, A. P. (1995). Steering business toward sustainability. Retrieved from https://doi.org/10.1016/b978-0-444-53846-8.00001-9 Carter, N. H., Viña, A., Hull, V., McConnell, W. J., Axinn, W., Ghimire, D., & Liu, J. (2014). Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Global Environmental Change, 34, 247-262. https://doi.org/10.1016/j.gloenvcha.2015.07.007 Cattin, M. F., Bersier, L. F., Banasek-Richter, C., Baltensperger, R., & Gabriel, J. P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427(6977), 835-839. https://doi.org/10.1038/nature02327 Cayley, A. (1857). On the theory of the analytical forms called trees. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 13(85), 172-176. https://doi.org/10.1080/14786445708642275 Cayley, E. (1875). Ueber die analytischen Figuren, welche in Der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen. Berichte der Deutschen Chemischen Gesellschaft, 8(2), 1056-1059. https://doi.org/10.1002/cber.18750080252 Centemeri, L. (2009). Environmental damage as negative externality: Uncertainty, moral complexity and the limits of the market. e-cadernos CES, 05. https://doi.org/10.4000/eces.266 Chen, G., & Wu, X. (2017). Energy overview for globalized world economy: Source, supply chain and sink. Renewable and Sustainable Energy Reviews, 69, 735-749. https://doi.org/10.1016/j.rser.2016.11.151 Chen, G., Wiedmann, T., Hadjikakou, M., & Rowley, H. (2016a). City carbon footprint networks. Energies, 9(8), 602. https://doi.org/10.3390/en9080602 Chen, G., Wiedmann, T., Wang, Y., & Hadjikakou, M. (2016b). Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities. Applied Energy, 184, 1082-1092. https://doi.org/10.1016/j.apenergy.2016.03.050 Chen, S., Chen, B., Feng, K., Liu, Z., Fromer, N., Tan, X., Alsaedi, A., Hayat, T., Weisz, H., Schellnhuber, H. J., & Hubacek, K. (2020). Physical and virtual carbon metabolism of global cities. Nature Communications, 11(1), 1-11. https://doi.org/10.1038/s41467-019-13757-3 Chen, S., Liu, Z., Chen, B., Zhu, F., Fath, B. D., Liang, S., Su, M., & Yang, J. (2019). Dynamic carbon emission linkages across boundaries. Earth’s Future, 7(2), 197-209. https://doi.org/10.1029/2018ef000811 Chen, Z. M. (2013). Embodied carbon dioxide emission by the globalized economy: A systems ecological input-output simulation. Journal of Environmental Informatics, 21(1), 35-44. https://doi.org/10.3808/jei.201300230 Chen, Z. M., Ohshita, S., Lenzen, M., et al. (2018). Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 9, 3581. https://doi.org/10.1038/s41467-018-05905-y Cheslak, E. F., & Lamarra, V. A. (1981). The residence time of energy as a measure of ecological organization. In Mitsch, W. J., Bossermann, R. W., & Klopatek, J. M. (Eds.), Energy and Ecological Modelling (pp. 591-600). Amsterdam: Elsevier. Christensen, P. P. (1989). Historical roots for ecological economics — Biophysical versus allocative approaches. Ecological Economics, 1(1), 17-36. https://doi.org/10.1016/0921-8009(89)90022-0 Clark, J. G. (1988). Energy and resource quality: The ecology of the economic process. Environmental History Review, 16(4), 88-90. https://doi.org/10.2307/398495 Clift, R., & Druckman, A. (2016). Taking stock of industrial ecology. Springer International Publishing. https://doi.org/10.1007/978-3-319-20571-7 Climate Impacts on Human Health | Climate Change Impacts | US EPA. (2017). United States Environmental Protection Agency | US EPA. Retrieved from https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-human-health_.html Collins, M., Stasiek, J., & Mikielewicz, J. (2006). The laws of thermodynamics and Homo sapiens the engineer. WIT Transactions on State-of-the-art in Science and Engineering (pp. 179-204). https://doi.org/10.2495/978-1-85312-853-0/06 Comberti, C., Thornton, T., Wyllie de Echeverria, V., & Patterson, T. (2015). Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Global Environmental Change, 34, 247-262. https://doi.org/10.1016/j.gloenvcha.2015.07.007 Costanza, R. (1980). Embodied energy and economic valuation. Science, 210(4475), 1219-1224. https://doi.org/10.1126/science.210.4475.1219 Costanza, R. (2012). The value of natural and social capital in our current full world and in a sustainable and desirable future. In Weinstein, M. P. & Turner, R. E. (Eds.), Sustainability Science: The Emerging Paradigm and the Urban Environment (pp. 99-109). Springer, New York. Costanza, R. (2008). Ecological economics 1. In Jorgensen, S. E. & Fath, B. (Eds.), Encyclopedia of Ecology (pp. 999-1006). Elsevier, Amsterdam. http://www.robertcostanza.com/wp-content/uploads/2017/02/2008_C_Costanza_EcoEco1.pdf Costanza, R., d'Arge, R., de Groot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253-260. https://doi.org/10.1038/387253a0 Costanza, R., & Neill, C. (1984). Energy intensities, interdependence, and value in ecological systems: A linear programming approach. Journal of Theoretical Biology, 106(1), 41-57. https://doi.org/10.1016/0022-5193(84)90026-2 Couix, Q. (2019). Natural resources in the theory of production: The Georgescu-Roegen/Daly versus Solow/Stiglitz controversy. The European Journal of the History of Economic Thought, 26(6), 1341-1378. https://doi.org/10.1080/09672567.2019.1679210 Cui, D., Zeng, W., Ma, B., Zhuo, Y., & Xie, Y. (2021). Ecological network analysis of an urban water metabolic system: Integrated metabolic processes of physical and virtual water. Science of The Total Environment, 787, 147432. https://doi.org/10.1016/j.scitotenv.2021.147432 Dafermos, Y., Nikolaidi, M., & Galanis, G. (2017). A stock-flow-fund ecological macroeconomic model. Ecological Economics, 131, 191-207. https://doi.org/10.1016/j.ecolecon.2016.08.013 Daily, G. C. (1997). Introduction: What are ecosystem services? In Daily, G. C. (Ed.), Nature’s Services: Societal Dependence on Natural Ecosystems (pp. 1-10). Island Press, Washington DC. Daly, H. E. (1991). Steady-state economics with new essays (2nd ed.). Island Press. http://pombo.free.fr/daly1991.pdf Davies, G. R. (2013). Appraising weak and strong sustainability: Searching for a middle ground. Consilience: The Journal of Sustainable Development, 10(1), 111-124. Decker, E. H., Elliott, S., Smith, F. A., Blake, D. R., & Rowland, F. S. (2000). Energy and material flow through the urban ecosystem. Annual Review of Energy and the Environment, 25(1), 685-740. https://doi.org/10.1146/annurev.energy.25.1.685 Derrible, S., Cheah, L., Arora, M., & Yeow, L. W. (2021). Urban metabolism. In Shi, W., Goodchild, M. F., Batty, M., Kwan, M. P., & Zhang, A. (Eds.), Urban Informatics (pp. 273-278). Springer, Singapore. https://doi.org/10.1007/978-981-15-8983-6_7 Desjardins, E. (2019). On the meaning of “coevolution” in social-ecological studies. Philosophical Topics, 47(1), 45-64. https://doi.org/10.5840/philtopics20194713 Dias, A. C., Lemos, D., Gabarrell, X., & Arroja, L. (2014). Environmentally extended input–output analysis on a city scale – Application to Aveiro (Portugal). Journal of Cleaner Production, 75, 118-129. https://doi.org/10.1016/j.jclepro.2014.04.012 Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H., Chan, K. M., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., … Zayas, C. N. (2019). Pervasive human-driven decline of life on earth points to the need for transformative change. Science, 366(6471). https://doi.org/10.1126/science.aax3100 Didenko, N., Klochkov, Y., & Skripnuk, D. (2018). Ecological criteria for comparing linear and circular economies. Resources, 7(3), 48. https://doi.org/10.3390/resources7030048 Doherty, T. S., & Driscoll, D. A. (2018). Coupling movement and landscape ecology for animal conservation in production landscapes. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172272. https://doi.org/10.1098/rspb.2017.2272 Dong, X., Ulgiati, S., Yan, M., Zhang, X., & Gao, W. (2008). Energy and eMergy evaluation of bioethanol production from wheat in Henan province, China. Energy Policy, 36(10), 3882-3892. https://doi.org/10.1016/j.enpol.2008.04.027 Donner, R., Barbos, S., Kurths, J., & Marwan, N. (2009). Understanding the earth as a complex system – Recent advances in data analysis and modelling in earth sciences. European Physical Journal Special Topics, 174, 1-9. https://doi.org/10.1140/epjst/e2009-01086-6 Duchin, F. (1992). Industrial input-output analysis: Implications for industrial ecology. Proceedings of the National Academy of Sciences, 89(3), 851-855. https://doi.org/10.1073/pnas.89.3.851 Duchin, F., & Levine, S. H. (2020). Industrial ecology. In Encyclopedia of Ecology (4th ed., pp. 352-358). https://doi.org/10.1016/B978-0-08-045405-4.00627-3 Duvigneaud, P., & Denayeyer-De Smet, S. (1977). L’ecosystéme urbs, in L’ecosystéme urbain Bruxellois, in Productivité en Belgique. In Duvigneaud, P., & Kestemont, P. (Eds.), Traveaux de la Section Belge du Programme Biologique International, Bruxelles, pp. 581-597. Ekins, P., Simon, S., Deutsch, L., Folke, C., & De Groot, R. (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological Economics, 44(2-3), 165-185. https://doi.org/10.1016/s0921-8009(02)00272-0 El-Haggar, S. M. (2007). Sustainable industrial design and waste management: Cradle-to-cradle for sustainable development. Elsevier Academic Press, Cambridge, MA. Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P. J., McDonald, R. I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K. C., & Wilkinson, C. (2013). Urbanization, biodiversity and ecosystem services: Challenges and opportunities: A global assessment. Springer. Environmental Quality in a Growing Economy. Baltimore: John Hopkins University Press. Retrieved from http://arachnid.biosci.utexas.edu/courses/THOC/Readings/Boulding_SpaceshipEarth.pdf Erdős, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae, 6(1), 290-297. https://www.renyi.hu/~p_erdos/1959-11.pdf Fath, B. D. (2004). Network analysis applied to large-scale cyber-ecosystems. Ecological Modelling, 171(1), 329-337. Fath, B. D. (2012). Analyzing ecological systems using network analysis. Ecological Questions, 16(1), 20-27. https://doi.org/10.2478/v10090-012-0008-0 Fath, B. D. (2017). Systems ecology, energy networks, and a path to sustainability. International Journal of Design & Nature and Ecodynamics, 12(1), 1-15. https://doi.org/10.2495/dne-v12-n1-1-15 Fath, B. D., & Borrett, S. R. (2006). A MATLAB® function for network environ analysis. Environmental Modelling & Software, 21(3), 375-405. https://doi.org/10.1016/j.envsoft.2004.11.007 Fath, B. D., & Patten, B. C. (1999). Review of the foundations of network environ analysis. Ecosystems, 2(2), 167-179. https://doi.org/10.1007/s100219900067 Fath, B. D., Patten, B. C., & Choi, J. S. (2001). Complementarity of ecological goal functions. Journal of Theoretical Biology, 208(4), 493-506. https://doi.org/10.1006/jtbi.2000.2234 Fath, B. D., Scharler, U. M., Ulanowicz, R. E., & Hannon, B. (2007). Ecological network analysis: Network construction. Ecological Modelling, 208(1), 49-55. https://doi.org/10.1016/j.ecolmodel.2007.04.029 Ferrão, P., & Fernandez, J. E. (2013). Sustainable urban metabolism. MIT Press, pp. 35-43. Fiscus, D. A., & Fath, B. D. (2018). Foundations for sustainability: A coherent framework of life–environment relations. Academic Press. Folke, C., Biggs, R., Norström, A. V., Reyers, B., & Rockström, J. (2016). Social-ecological resilience and biosphere-based sustainability science. Ecology and Society, 21(3). https://doi.org/10.5751/es-08748-210341 Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35(1), 557-581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 Folke, C., Polasky, S., Rockström, J., et al. (2021). Our future in the Anthropocene biosphere. Ambio, 50, 834-869. https://doi.org/10.1007/s13280-021-01544-8 Fortuna, M. A., Gomez-Rodríguez, C., & Bascompte, J. (2006). Spatial network structure and amphibian persistence in stochastic environments. Proceedings of the Royal Society of London Series B, 273, 1429-1438. https://doi.org/10.1098/rspb.2005.3470 Foster, J. B. (1999). Marx's theory of metabolic rift: Classical foundations for environmental sociology. American Journal of Sociology, 105(2), 366-405. https://doi.org/10.1086/210315 Frank, B., Delano, D., & Caniglia, B. S. (2017). Urban systems: A socio-ecological system perspective. Sociology International Journal, 1(1), 00001. Franzese, P. P., Rydberg, T., Russo, G. F., & Ulgiati, S. (2009). Sustainable biomass production: A comparison between gross energy requirement and emergy synthesis methods. Ecological Indicators, 9(5), 959-970. Fry, J., Geschke, A., Langdon, S., Lenzen, M., Li, M., Malik, A., Sun, Y., & Wiedmann, T. (2021). Creating multi-scale nested MRIO tables for linking localized impacts to global consumption drivers. Journal of Industrial Ecology. https://doi.org/10.1111/jiec.13165 Fry, J., Lenzen, M., Jin, Y., Wakiyama, T., Baynes, T., Wiedmann, T., Malik, A., Chen, G., Wang, Y., Geschke, A., & Schandl, H. (2018). Assessing carbon footprints of cities under limited information. Journal of Cleaner Production, 176, 1254-1270. Galychyn, O., Buonocore, E., & Franzese, P. P. (2020). Exploring the global scientific literature on urban metabolism. Ecological Questions, 31(4), 1. https://doi.org/10.12775/eq.2020.031 Georgescu-Roegen, N. (1971). The entropy law and the economic process. Cambridge: Harvard University Press. Girardet, H. (1990). The metabolism of cities. In The Living City: Towards a Sustainable Future (pp. 170-180). Routledge, London. Grasso, D., Kahn, D., Kaseva, M. E., & Mbuligwe, S. E. (2009). Hazardous waste. In Natural and Human Induced Hazards and Environmental Waste Management (pp. 1-54). Encyclopedia of Life Support Systems (EOLSS), UNESCO. Guan, Y., Huang, G., Liu, L., Huang, C. Z., & Zhai, M. (2019). Ecological network analysis for an industrial solid waste metabolism system. Environmental Pollution, 244, 279-287. https://doi.org/10.1016/j.envpol.2018.10.052 Guevara, Z., & Domingos, T. (2017). The multi-factor energy input–output model. Energy Economics, 61, 261-269. https://doi.org/10.1016/j.eneco.2016.11.020 Haase, D. (2021). Continuous integration in urban social-ecological systems science needs to allow for spacing co-existence. Ambio, 50(9), 1644-1649. https://doi.org/10.1007/s13280-020-01449-y Haberl, H. (2001). The energetic metabolism of societies part I: Accounting concepts. Journal of Industrial Ecology, 5(1), 11-33. https://doi.org/10.1162/108819801753358481 Haider, L. J., Schlüter, M., Folke, C., & Reyers, B. (2021). Rethinking resilience and development: A coevolutionary perspective. Ambio, 50(7), 1304-1312. https://doi.org/10.1007/s13280-020-01485-8 Hall, C. A., & Bradley, D. P. (1990). Ecological economics: Its implications for forest management and research (A workshop summary). Conservation Biology, 4(3), 221-226. https://doi.org/10.1111/j.1523-1739.1990.tb00280.x Halnes, G., Fath, B. D., & Liljenström, H. (2007). The modified niche model: Including detritus in simple structural food web models. Ecological Modelling, 208, 9-16. Hannon, B., Costanza, R., & Herendeen, R. A. (1986). Measures of energy cost and value in ecosystems. Journal of Environmental Economics and Management, 13, 391-401. Hanski, I. (1994). A practical model of metapopulation dynamics. The Journal of Animal Ecology, 63(1), 151. https://doi.org/10.2307/5591 Hanya, T., & Ambe, Y. (1976). A study on the metabolism of cities. In Science for a Better Environment (pp. 228-233). HSEC, Science Council of Japan. Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243-1248. Harris, S., Weinzettel, J., Bigano, A., & Källmén, A. (2020). Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. Journal of Cleaner Production, 248, 119206. https://doi.org/10.1016/j.jclepro.2019.119206 Hastings, A., Hom, C. L., Ellner, S., Turchin, P., & Godfray, H. C. (1993). Chaos in ecology: Is mother nature a strange attractor? Annual Review of Ecology and Systematics, 24(1), 1-33. https://doi.org/10.1146/annurev.es.24.110193.000245 Häyhä, T., & Franzese, P. P. (2014). Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecological Modelling, 289, 124-132. https://doi.org/10.1016/j.ecolmodel.2014.07.002 He, J., & Zhang, P. (2018). Evaluating the coordination of industrial-economic development based on anthropogenic carbon emissions in Henan province, China. International Journal of Environmental Research and Public Health, 15(9), 1815. https://doi.org/10.3390/ijerph15091815 Hediger, W. (2008). Weak and strong sustainability, environmental conservation and economic growth. Natural Resource Modeling, 19(3), 359-394. https://doi.org/10.1111/j.1939-7445.2006.tb00185.x Heinonen, J., Ottelin, J., Ala-Mantila, S., Wiedmann, T., Clarke, J., & Junnila, S. (2020). Spatial consumption-based carbon footprint assessments - A review of recent developments in the field. Journal of Cleaner Production, 256, 120335. https://doi.org/10.1016/j.jclepro.2020.120335 Herendeen, R. A. (1975). Energy cost of goods and services. Retrieved from https://doi.org/10.2172/4432615 Herendeen, R. A. (2004). Energy analysis and emergy analysis—a comparison. Ecological Modelling, 178(1-2), 227-237. https://doi.org/10.1016/j.ecolmodel.2003.12.017 Herman, E. Daly. (1992). Allocation, distribution, and scale: Towards an economics that is efficient, just, and sustainable. Ecological Economics, 6, 185-193. Hexmoor, H. (2014). Ubiquity of networks. In Computational Network Science: An Algorithmic Approach (pp. 1-14). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-800891-1.00001-9 Higashi, M., & Patten, B. C. (1989). Dominance of indirect causality in ecosystems. The American Naturalist, 133(2), 288-302. https://doi.org/10.1086/284919 Holling, C. S. (1986). Adaptive environmental management. Environment: Science and Policy for Sustainable Development, 28(9), 39-39. https://doi.org/10.1080/00139157.1986.9928829 Honkasalo, A. (1998). Entropy, exergy and steady-state economy. Sustainable Development, 6(3), 130-142. https://doi.org/10.1002/(sici)1099-1719(199812)6:3<130::aid-sd95>3.0.co;2-v Huang, Q., Zheng, X., Liu, F., Hu, Y., & Zuo, Y. (2018). Dynamic analysis method to open the “black box” of urban metabolism. Resources, Conservation and Recycling, 139, 377-386. https://doi.org/10.1016/j.resconrec.2018.09.010 Ibrahim, M. J. (2017). Introductory chapter: Economics, natural resources and sustainable development. In Emerging Issues in Economics and Development (pp. 273-278). https://doi.org/10.5772/intechopen.70399 Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., Edwards, F., Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E., et al. (2009). Ecological networks—Beyond food webs. Journal of Animal Ecology, 78(1), 253-269. Iñiguez, G., Battiston, F., & Karsai, M. (2020). Bridging the gap between graphs and networks. Communications Physics, 3(1). https://doi.org/10.1038/s42005-020-0359-6 Islam, K. M. N., Kenway, S. J., Renouf, M. A., Wiedmann, T., & Lam, K. L. (2021). A multi-regional input-output analysis of direct and virtual urban water flows to reduce city water footprints in Australia. Sustainable Cities and Society, 75, 103236. https://doi.org/10.1016/j.scs.2021.103236 Ji, X., & Luo, Z. (2020). Opening the black box of economic processes: Ecological economics from its biophysical foundation to a sustainable economic institution. The Anthropocene Review, 7(3), 231-247. https://doi.org/10.1177/2053019620940753 Jonker, G., & Harmsen, J. (2012). Introduction. In Engineering for Sustainability (pp. 1-13). https://doi.org/10.1016/B978-0-444-53846-8.00001-9 Jørgensen, S. E., & Fath, B. D. (2004). Application of thermodynamic principles in ecology. Ecological Complexity, 1(4), 267-280. https://doi.org/10.1016/j.ecocom.2004.07.001 Jørgensen, S. E., & Mejer, H. F. (1979). A holistic approach to ecological modelling. Ecological Modelling, 7, 169-189. Jørgensen, S. E., & Mejer, H. F. (1981). Application of exergy in ecological models. In Dubois, D. (Ed.), Progress in Ecological Modelling (pp. 311-347). Editions CEBEDOC, Belgium: Liege. Kåberger, T., & Månsson, B. (2001). Entropy and economic processes — Physics perspectives. Ecological Economics, 36(1), 165-179. https://doi.org/10.1016/s0921-8009(00)00225-1 Kalt, G., Kaufmann, L., Kastner, T., & Krausmann, F. (2021). Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material. Ecological Economics, 188, 107129. https://doi.org/10.1016/j.ecolecon.2021.107129 Karyotis, V., & Khouzani, M. (2016). Malware-propagative Markov random fields. In Malware Diffusion Models for Wireless Complex Networks (pp. 107-138). https://doi.org/10.1016/b978-0-12-802714-1.00015-3 Kennedy, C., Pincetl, S., & Bunje, P. (2010). The study of urban metabolism and its applications to urban planning and design. Environmental Pollution, 159(8-9), 1965-1973. https://doi.org/10.1016/j.envpol.2010.10.022 Kennedy, C. A., Cuddihy, J., & Engel Yan, J. (2007). The changing metabolism of cities. Journal of Industrial Ecology, 11(1), 43-59. https://doi.org/10.1162/jiec.2007.1106 Kiehl, J. T., & Trenberth, K. E. (1997). Earth's annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197-208. https://doi.org/10.1175/1520-0477(1997)078<0197 >2.0.co;2 Kissinger, M., & Stossel, Z. (2021). An integrated, multi-scale approach for modelling urban metabolism changes as a means for assessing urban sustainability. Sustainable Cities and Society, 67, 102695. https://doi.org/10.1016/j.scs.2020.102695 Kitzes, J. (2013). An introduction to environmentally-extended input-output analysis. Resources, 2(4), 489-503. https://doi.org/10.3390/resources2040489 Klitgaard, K. (2020). Sustainability as an economic issue: A biophysical economic perspective. Sustainability, 12(1), 364. https://doi.org/10.3390/su12010364 Kluger, L. C., Gorris, P., Kochalski, S., Mueller, M. S., & Romagnoni, G. (2020). Studying human–nature relationships through a network lens: A systematic review. People and Nature, 2(4), 1100-1116. https://doi.org/10.1002/pan3.10136 Korhonen, J. (2001). Some suggestions for regional industrial ecosystems - Extended industrial ecology. Eco-Management and Auditing, 8(1), 57-69. https://doi.org/10.1002/ema.146 Kostic, M. M. (2014). The elusive nature of entropy and its physical meaning. Entropy, 16(2), 953-967. https://doi.org/10.3390/e16020953 Kostic, M. M. (2020). The second law and entropy misconceptions demystified. Entropy, 22(6), 648. https://doi.org/10.3390/e22060648 Krishna, I. M., & Manickam, V. (2017). Chapter seven - Environmental accounting. In Environmental Management: Science and Engineering for Industry (pp. 113-134). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-444-53846-8.00001-9 Krishna, I. M., & Manickam, V. (2017). Environmental management: Science and engineering for industry. Butterworth-Heinemann. Kritz, M. V. (2010). Boundaries, interactions and environmental systems. Mecánica Computacional, 29, 2673-2687. Kwa, C. L. (2001). Environmental sciences. In International Encyclopedia of the Social & Behavioral Sciences (pp. 4659-4663). Pergamon. https://doi.org/10.1016/B0-08-043076-7/03145-4 Laner, D., Feketitsch, J., Rechberger, H., & Fellner, J. (2015). A novel approach to characterize data uncertainty in material flow analysis and its application to plastics flows in Austria. Journal of Industrial Ecology, 20(5), 1050-1063. https://doi.org/10.1111/jiec.12326 Lapointe, M., Gurney, G. G., Coulthard, S., & Cumming, G. S. (2021). Ecosystem services, well-being benefits and urbanization associations in a small island developing state. People and Nature, 3(2), 391-404. https://doi.org/10.1002/pan3.10180 Leclerc de Buffon, C. G. (1770). Les Oiseaux Qui Ne Peuvent Voler. Histoire Naturelle des Oiseaux, I (1), 394. Trans. Phillip R. Sloan. Leff, H. S., & Rex, A. F. (1990). Maxwell’s demon: Entropy, information, computing. Princeton University Press. Lefstad, L. (2021). The important role of strong sustainability and the potential of the circular economy in generating a socially and ecologically just future. Revista Estudiantil d’Anàlisi Interdisciplinària, 4(1). https://doi.org/10.1007/978-3-030-11352-0_503 Lenk, C., Arendt, R., Bach, V., & Finkbeiner, M. (2021). Territorial-based vs. consumption-based carbon footprint of an urban district—A case study of Berlin-Wedding. Sustainability, 13(13), 7262. https://doi.org/10.3390/su13137262 Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., & Schellnhuber, H. J. (2019). Climate tipping points — Too risky to bet against. Nature, 575(7784), 592-595. https://doi.org/10.1038/d41586-019-03595-0 Leontief, W. (1970). Environmental repercussions and the economic structure: An input-output approach. The Review of Economics and Statistics, 52(3), 262-271. https://doi.org/10.2307/1926294 Leontief, W. W. (1966). Input-output economics. Oxford University Press. Levin, S. A. (2005). Self-organization and the emergence of complexity in ecological systems. BioScience, 55(12), 1075-1079. https://doi.org/10.1641/0006-3568(2005)055[1075:sateoc]2.0.co;2 Li, H. (2017). Low-carbon benefit of industrial symbiosis from a scope-3 perspective: A case study in China. Applied Ecology and Environmental Research, 15(3), 135-153. https://doi.org/10.15666/aeer/1503_135153 Li, J., Huang, G., & Liu, L. (2018). Ecological network analysis for urban metabolism and carbon emissions based on input-output tables: A case study of Guangdong Province. Ecological Modelling, 383, 118-126. https://doi.org/10.1016/j.ecolmodel.2018.05.009 Li, L., Lu, H., Campbell, D. E., & Ren, H. (2010). Emergy algebra: Improving matrix methods for calculating transformities. Ecological Modelling, 221(3), 411-422. https://doi.org/10.1016/j.ecolmodel.2009.10.015 Licul, I., & Denona Bogović, N. (2018). From classical to contemporary ecological economics theory. Ekonomski Vjesnik/Econviews - Review of Contemporary Business, Entrepreneurship and Economic Issues, 31(2), 361-370. https://hrcak.srce.hr/ojs/index.php/ekonomski-vjesnik/article/view/6892 Liu, G., Yang, Z., Chen, B., & Zhang, L. (2013). Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis. Ecological Modelling, 252, 280-287. https://doi.org/10.1016/j.ecolmodel.2013.02.002 Liu, J., Wang, R., & Yang, J. (2005). Metabolism and driving forces of Chinese urban household consumption. Population and Environment, 26(4), 325-341. https://doi.org/10.1007/s11111-005-3345-8 Liu, L., Zhang, H., Gao, Y., Zhu, W., Liu, X., & Xu, Q. (2019). Hotspot identification and interaction analyses of the provisioning of multiple ecosystem services: Case study of Shaanxi Province, China. Ecological Indicators, 107, 105566. https://doi.org/10.1016/j.ecolind.2019.105566 Liu, Z., Li, B., Chen, M., & Li, T. (2021). Evaluation on sustainability of water resource in Karst area based on the emergy ecological footprint model and analysis of its driving factors: A case study of Guiyang City, China. Environmental Science and Pollution Research, 28(35), 49232-49243. https://doi.org/10.1007/s11356-021-14162-4 Liu, Z., Liu, W., Adams, M., Côté, R. P., Geng, Y., & Chen, S. (2019). A hybrid model of LCA and emergy for co-benefits assessment associated with waste and by-product reutilization. Journal of Cleaner Production, 236, 117670. https://doi.org/10.1016/j.jclepro.2019.117670 Lu, Y., Su, M., Liu, G., Chen, B., Zhou, S., & Jiang, M. (2012). Ecological network analysis for a low-carbon and high-tech industrial park. The Scientific World Journal, 2012, 1-9. https://doi.org/10.1100/2012/305474 Lucertini, G., & Musco, F. (2020). Circular urban metabolism framework. One Earth, 2(2), 138-142. https://doi.org/10.1016/j.oneear.2020.02.004 MA (Millennium Ecosystem Assessment). (2005). Ecosystems and human well-being: Synthesis. Island Press, Washington D.C. Retrieved from https://www.millenniumassessment.org/documents/document.356.aspx.pdf Malghan, D. (2010). On the relationship between scale, allocation, and distribution. Ecological Economics, 69(11), 2261-2270. https://doi.org/10.1016/j.ecolecon.2010.06.015 Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: Threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104 Malthus, T. R. (1998). An essay on the principle of population, as it affects the future improvement of society with remarks on the speculations of Mr. Godwin, M. Condorcet, and other writers. Electronic Scholarly Publishing Project, pp. 55-66. Retrieved from http://www.esp.org/books/malthus/population/malthus.pdf Manfroni, M., Velasco-Fernández, R., Pérez-Sánchez, L., Bukkens, S. G., & Giampietro, M. (2021). The profile of time allocation in the metabolic pattern of society: An internal biophysical limit to economic growth. Ecological Economics, 190, 107183. https://doi.org/10.1016/j.ecolecon.2021.107183 Martin, J., Maris, V., & Simberloff, D. S. (2016). The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences, 113(22), 6105-6112. https://doi.org/10.1073/pnas.1525003113 Marx, K. (1867). Capital: A critique of political economy : Volume I, Book One: The Process of Production of Capital. Progress Publishers, Moscow, USSR, pp. 127-135. Retrieved from https://www.marxists.org/archive/marx/works/download/pdf/Capital-Volume-I.pdf McGinnis, M. D., & Ostrom, E. (2014). Social-ecological system framework: Initial changes and continuing challenges. Ecology and Society, 19(2), 30. https://doi.org/10.5751/ES-06387-190230 Mehrotra, S. (1991). On the social specifications of use value in Marx's capital. Social Scientist, 19(8/9), 72. https://doi.org/10.2307/3517700 Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837 Michelini, G., Moraes, R. N., Cunha, R. N., Costa, J. M., & Ometto, A. R. (2017). From linear to circular economy: PSS conducting the transition. Procedia CIRP, 64, 2-6. https://doi.org/10.1016/j.procir.2017.03.012 Midžić, I., Štorga, M., & Marjanović, D. (2014). Energy quality hierarchy and “transformity” in evaluation of product's working principles. Procedia CIRP, 15, 300-305. https://doi.org/10.1016/j.procir.2014.06.084 Moilanen, A. (2011). On the limitations of graph-theoretic connectivity in spatial ecology and conservation. Journal of Applied Ecology, 48(6), 1543-1547. https://doi.org/10.1111/j.1365-2664.2011.02062.x Montuori, A. (2011). Systems approach. In Encyclopedia of Creativity (pp. 414-421). https://doi.org/10.1016/B978-0-12-375038-9.00212-0 Morowitz, H. J. (1968). Energy flow in biology; Biological organization as a problem in thermal physics. New York: Academic Press. Morris, J. T., Christian, R. R., & Ulanowicz, R. E. (2005). Analysis of size and complexity of randomly constructed food webs by information theoretic metrics. In Belgrano, A., Scharler, U. M., Dunne, J., & Ulanowicz, R. E. (Eds.), Aquatic Food Webs: An Ecosystem Approach (pp. 73-85). Oxford University Press. Muhtar, P., Xia, J., Muyibul, Z., Zihriya, B., Abliz, A., & Zhang, M. (2021). Evaluating the evolution of oasis water metabolism using ecological network analysis: A synthesis of structural and functional properties. Journal of Cleaner Production, 280, 124422. https://doi.org/10.1016/j.jclepro.2020.124422 Mukherjee, S. (2021). Boolean logic in fluid flow. In Developments in Structural Geology and Tectonics (Vol. 5, pp. 273-278). https://doi.org/10.1016/B978-0-12-814048-2.00021-1 Murphy, T., Murphy, D., Love, T., LeHew, M., & McCall, B. (2021). Modernity is incompatible with planetary limits: Developing a plan for the future. Energy Research & Social Science, 81, 102239. https://doi.org/10.1016/j.erss.2021.102239 Musango, J. K., Currie, P., & Robinson, B. (2017). Urban metabolism for resource efficient cities: From theory to implementation. UN Environment, Paris. Myers, S. S., Gaffikin, L., Golden, C. D., Ostfeld, R. S., Redford, K. H., Ricketts, T. H., Turner, W. R., & Osofsky, S. A. (2013). Human health impacts of ecosystem alteration. Proceedings of the National Academy of Sciences, 110(47), 18753-18760. https://doi.org/10.1073/pnas.1218656110 National Research Council. (2005). Network science. Washington, DC: The National Academies Press. https://doi.org/10.17226/11516 Newcombe, K., Kalma, J., & Aston, A. (1978). The metabolism of a city: The case of Hong Kong. Ambio, 7(1), 3-15. Niccolucci, V., Pulselli, F. M., & Tiezzi, E. (2007). Strengthening the threshold hypothesis: Economic and biophysical limits to growth. Ecological Economics, 60(4), 667-672. https://doi.org/10.1016/j.ecolecon.2006.10.008 Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. Wiley, New York. Nogues, Q., Raoux, A., Araignous, E., Chaalali, A., Hattab, T., Leroy, B., Rais Lasram, F. B., David, V., Le Loc’h, F., Dauvin, J. C., & Niquil, N. (2021). Cumulative effects of marine renewable energy and climate change on ecosystem properties: Sensitivity of ecological network analysis. Ecological Indicators, 121, 107128. https://doi.org/10.1016/j.ecolind.2020.107128 Odum, E. P. (1964). The new ecology. BioScience, 14(7), 14-16. https://doi.org/10.2307/1293228 Odum, E. P. (1977). The emergence of ecology as a new integrative discipline. Science, 195(4295), 1289-1293. https://doi.org/10.1126/science.195.4295.1289 Odum, E. P. (1959). Fundamentals of ecology (2nd ed.). W. B. Saunders, Philadelphia, PA. Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). W. B. Saunders, Philadelphia, PA. Odum, H. T. (1988). Self-organization, transformity, and information. Science, 242(4882), 1132-1139. https://doi.org/10.1126/science.242.4882.1132 Odum, H. T. (1991). Emergy and biogeochemical cycles. In Rossi, C., & Tiezzi, E. (Eds.), Ecological Physical Chemistry (pp. 25-65). Elsevier, Amsterdam. Odum, H. T. (1996). Environmental accounting: Emergy and environmental decision making. Wiley, New York. Odum, H. T. (1983). Systems ecology: An introduction. Wiley, New York. Odum, H. T., & Pinkerton, R. C. (1955). Time's speed regulator: The optimum efficiency for maximum power output in physical and biological systems. American Science, 43(3), 331-343. OECD. (2012). OECD environmental outlook to 2050. OECD Publishing. https://doi.org/10.1787/9789264122246-en Ogushi, Y. (2006). Thermodynamic constraints on the economic systems and operational principles for a sustainable society. International Journal of Environment, Workplace and Employment, 2(2/3), 226-241. https://doi.org/10.1504/IJEWE.2006.011083 Okamoto, S. (2013). Impacts of growth of a service economy on CO2 emissions: Japan’s case. Journal of Economic Structures, 2(1). https://doi.org/10.1186/2193-2409-2-8 Ottelin, J., Ala-Mantila, S., Heinonen, J., Wiedmann, T., Clarke, J., & Junnila, S. (2019). What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. Environmental Research Letters, 14(9), 093001. https://doi.org/10.1088/1748-9326/ab2212 Owen, A., Brockway, P., Brand-Correa, L., Bunse, L., Sakai, M., & Barrett, J. (2017). Energy consumption-based accounts: A comparison of results using different energy extension vectors. Applied Energy, 190, 464-473. https://doi.org/10.1016/j.apenergy.2016.12.089 Pan, Y., Zhang, B., Wu, Y., & Tian, Y. (2021). Sustainability assessment of urban ecological-economic systems based on emergy analysis: A case study in Simao, China. Ecological Indicators, 121, 107157. https://doi.org/10.1016/j.ecolind.2020.107157 Pascual, M., & Dunne, J. P. (2006). Ecological networks: Linking structure to dynamics in food webs. Oxford University Press. Patten, B. C. (1978). Systems approach to the concept of environment. Ohio Journal of Science, 78(4), 206-222. Patten, B. C. (1995). Network integration of ecological extremal principles: Exergy, emergy, power, ascendency, and indirect effects. Ecological Modelling, 79(1-3), 75-84. https://doi.org/10.1016/0304-3800(94)00037-i Patterson, M. G. (2012). Are all processes equally efficient from an emergy perspective: Analysis of ecological and economic networks using matrix algebra methods. Ecological Modelling, 226, 77-91. https://doi.org/10.1016/j.ecolmodel.2011.12.015 Patterson, M. G. (2014). Evaluation of matrix algebra methods for calculating transformities from ecological and economic network data. Ecological Modelling, 271, 72-82. https://doi.org/10.1016/j.ecolind.2017.03.060 Patterson, M., McDonald, G., & Hardy, D. (2017). Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling, 362, 19-36. https://doi.org/10.1016/j.ecolmodel.2017.07.022 Pelenc, J., & Ballet, J. (2015). Strong sustainability, critical natural capital and the capability approach. Ecological Economics, 112, 36-44. https://doi.org/10.1016/j.ecolecon.2015.02.006 Popescu, C. (2012). Entropy and the socio-economic system. Valahian Journal of Economic Studies, 3(1), 105-111. Pourbohloul, B., & Kieny, M. (2011). Complex systems analysis: Towards holistic approaches to health systems planning and policy. Bulletin of the World Health Organization, 89(4), 242-242. https://doi.org/10.2471/blt.11.087544 Preiser, R., Biggs, R., De Vos, A., & Folke, C. (2018). Social-ecological systems as complex adaptive systems: Organizing principles for advancing research methods and approaches. Ecology and Society, 23(4). https://doi.org/10.5751/ES-10558-230446 Prigogine, I. (1955). Thermodynamics of irreversible processes. Wiley, New York. Prima, M. C., Duchesne, T., Fortin, A., Rivest, L. P., & Fortin, D. (2018). Combining network theory and reaction-advection-diffusion modelling for predicting animal distribution in dynamic environments. Methods in Ecology and Evolution, 9(5), 1221-1231. https://doi.org/10.1111/2041-210X.12997 Prima, M. C., Duchesne, T., Fortin, A., Rivest, L. P., Drapeau, P., St-Laurent, M. H., et al. (2019). A landscape experiment of spatial network robustness and space-use reorganization following habitat fragmentation. Functional Ecology, 33(9), 1663-1673. https://doi.org/10.1111/1365-2435.13380 Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484-489. https://doi.org/10.1126/science.1114736 Rees, W. E. (2002). An ecological economics perspective on sustainability and prospects for ending poverty. Population and Environment, 24(1), 15-46. https://doi.org/10.1023/A:1021200918904 Ridoutt, B. G., Hadjikakou, M., Nolan, M., & Bryan, B. A. (2018). From water-use to water-scarcity footprinting in environmentally extended input-output analysis. Environmental Science & Technology, 52(12), 6761-6770. https://doi.org/10.1021/acs.est.8b00416 Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., De Wit, C. A., Hughes, T., Van Der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., ... J. Foley. (2009). A safe operating space for humanity. Nature, 461(7263), 472-475. https://doi.org/10.1038/461472a Røpke, I. (2004). The early history of modern ecological economics. Ecological Economics, 50(3-4), 293-314. https://doi.org/10.1016/j.ecolecon.2004.02.012 Ruiz-Villaverde, A. (2019). Editor’s introduction: The growing failure of the neoclassical paradigm in economics. American Journal of Economics and Sociology, 78(1), 13-34. https://doi.org/10.1111/ajes.12265 Russo, T., Buonocore, E., & Franzese, P. P. (2014). The urban metabolism of the city of Uppsala (Sweden). Journal of Environmental Accounting and Management, 2(1), 1-12. https://doi.org/10.5890/jeam.2014.03.001 Ruth, M. (2011). Entropy, economics, and policy. In Thermodynamics and the destruction of resources (pp. 402-428). Cambridge University Press. https://doi.org/10.1017/CBO9780511976049.020 Saguin, K. (2019). Urban metabolism. In The Wiley Blackwell Encyclopedia of Urban and Regional Studies (pp. 1-5). https://doi.org/10.1002/9781118568446.eurs0378 Saladini, F., Gopalakrishnan, V., Bastianoni, S., & Bakshi, B. R. (2018). Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems. Ecosystem Services, 30, 257-266. https://doi.org/10.1016/j.ecoser.2018.02.004 Sandifer, P. A., & Sutton-Grier, A. E. (2014). Connecting stressors, ocean ecosystem services, and human health. Natural Resources Forum, 38(3), 157-167. https://doi.org/10.1111/1477-8947.12047 Saura, S., Bodin, Ö., & Fortin, M. J. (2014). Editor's choice: Steppingstones are crucial for species' long-distance dispersal and range expansion through habitat networks. Journal of Applied Ecology, 51(1), 171-182. https://doi.org/10.1111/1365-2664.12179 Sayles, J. S., Mancilla Garcia, M., Hamilton, M., Alexander, S. M., Baggio, J. A., Fischer, A. P., Ingold, K., Meredith, G. R., Pittman, J., & Armitage, D. (2019). Social-ecological network analysis for sustainability sciences: A systematic review and innovative research agenda for the future. Environmental Research Letters, 14(9), 093003. https://doi.org/10.1088/1748-9326/ab2619 Schaffartzik, A., Sachs, M., & Wiedenhofer, D. (2014). Environmentally extended input-output analysis. Institute of Social Ecology, Alpen-Adria-Universitaet, Vienna. Retrieved from https://boku.ac.at/fileadmin/data/H03000/H73000/H73700/Publikationen/Working_Papers/working-paper-154-web.pdf Schmid, F. (2020). Vienna’s GHG emissions from a production vs. consumption-based accounting perspective: A comparative analysis [Master's thesis, Alpen-Adria-Universität Klagenfurt, Wien Graz]. Retrieved from https://boku.ac.at/fileadmin/data/H03000/H73000/H73700/Publikationen/Working_Papers/WP183_web.pdf Schneider, E. D., & Kay, J. J. (1993). Energy degradation, thermodynamics, and the development of ecosystems. In Advances in Energy Systems and Technology (Vol. 9, pp. 25-62). American Society of Mechanical Engineering. Schoon, M., & Van der Leeuw, S. (2015). The shift toward social-ecological systems perspectives: Insights into the human-nature relationship. Natures Sciences Sociétés, 23(2), 166-174. https://doi.org/10.1051/nss/2015034 Sha, S., Melin, K., & Hurme, M. (2013). Computer aided solar emergy based sustainability evaluations in process design. Chemical Engineering Transactions, 32, 1225-1230. https://doi.org/10.3303/CET1332205 Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. https://doi.org/10.1016/j.enpol.2008.08.016 Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x Shekarian, E. (2020). A review of factors affecting closed-loop supply chain models. Journal of Cleaner Production, 253, 119823. https://doi.org/10.1016/j.jclepro.2019.119823 Silow, E. A., Mokry, A. V., & Jørgensen, S. E. (2011). Some applications of thermodynamics for ecological systems. In Thermodynamics. https://doi.org/10.5772/19611 Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations. Retrieved from https://eet.pixel-online.org/files/etranslation/original/The%20Wealth%20of%20Nations.pdf Smith, D. F. (1974). Quantitative analysis of the functional relationships existing between ecosystem components. Oecologia, 16(2), 107-117. https://doi.org/10.1007/bf00345576 Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65-94. https://doi.org/10.2307/1884513 Song, F., Yang, X., Liu, T., & Xue, Q. (2019). Evaluation of urban ecological carrying capacity based on state-space method. IOP Conference Series: Earth and Environmental Science, 237(3), 032106. https://doi.org/10.1088/1755-1315/237/3/032106 Spash, C. L. (2021). The history of pollution 'externalities' in economic thought. Institute for Multi-Level Governance & Development, Department of Socioeconomics, Vienna University of Economics and Business. Retrieved from http://www-sre.wu.ac.at/sre-disc/sre-disc-2021_01.pdf Stanhill, G. (1977). An urban agro-ecosystem: The example of nineteenth-century Paris. Agro-Ecosystems, 3(1), 269-284. Steininger, K. W., Munoz, P., Karstensen, J., Peters, G. P., Strohmaier, R., & Velázquez, E. (2018). Austria’s consumption-based greenhouse gas emissions: Identifying sectoral sources and destinations. Global Environmental Change, 48(1), 226-242. https://doi.org/10.1016/j.gloenvcha.2017.11.011 Stouffer, D. B., Camacho, J., & Amaral, L. A. (2006). A robust measure of food web intervality. Proceedings of the National Academy of Sciences, 103(50), 19015-19020. https://doi.org/10.1073/pnas.0603844103 Tan, L. M., Arbabi, H., Brockway, P. E., Densley Tingley, D., & Mayfield, M. (2019). An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis. Applied Energy, 254, 113618. https://doi.org/10.1016/j.apenergy.2019.113618 Tan, L. M., Arbabi, H., Densley Tingley, D., Mayfield, M., & Brockway, P. E. (2021). Mapping resource effectiveness across urban systems. NPJ Urban Sustainability, 1(1), 20. https://doi.org/10.1038/s42949-020-00009-3 Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16(3), 284-307. https://doi.org/10.2307/1930070 Paoletti, T. (2006). Leonard Euler's solution to the Königsberg bridge problem. Convergence, 3(1). Retrieved from https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem Ulanowicz, R. E. (1986). Growth and development, ecosystems phenomenology. Springer-Verlag, New York. Ulanowicz, R. E. (1997). Ecology, the ascendent perspective. Columbia University Press, New York. Ulanowicz, R. E. (2000). Ascendency: A measure of ecosystem performance. In Jørgensen, S. E., & Mueller, F. (Eds.), Handbook of ecosystem theories and management (pp. 303-315). Lewis Publications, Boca Raton. Retrieved from https://people.clas.ufl.edu/ulan/files/AscPerfm.pdf Ulanowicz, R. E. (2004). On the nature of ecodynamics. Ecological Complexity, 1(4), 341-354. https://doi.org/10.1016/j.ecocom.2004.06.001 Ulanowicz, R. E. (2011). Towards quantifying a wider reality: Shannon exonerata. Information, 2(3), 624-634. https://doi.org/10.3390/info2030624 Ulanowicz, R. E., Goerner, S. J., Lietaer, B., & Gomez, R. (2009). Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6(1), 27-36. https://doi.org/10.1016/j.ecocom.2008.10.004 Ulgiati, S., Raugei, M., & Bargigli, S. (2006). Overcoming the inadequacy of single criterion approaches to life cycle assessment. Ecological Modelling, 190(3-4), 432-442. https://doi.org/10.1016/j.ecolmodel.2005.04.035 Urban, D. L., & Keitt, T. H. (2001). Landscape connectivity: A graph-theoretic perspective. Ecology, 82(5), 1205-1218. https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2 Usubiaga-Liaño, A., & Ekins, P. (2021). Time for science-based national targets for environmental sustainability: An assessment of existing metrics and the ESGAP framework. Frontiers in Environmental Science, 9(1), 1-11. https://doi.org/10.3389/fenvs.2021.761377 Usubiaga-Liaño, A., Arto, I., & Acosta-Fernández, J. (2021). Double accounting in energy footprint and related assessments: How common is it and what are the consequences? Energy, 222, 119891. https://doi.org/10.1016/j.energy.2021.119891 Utama, N. A., Fathoni, A. M., Kristianto, M. A., & McLellan, B. C. (2014). The end of fossil fuel era: Supply-demand measures through energy efficiency. Procedia Environmental Sciences, 20(1), 40-45. https://doi.org/10.1016/j.proenv.2014.03.007 van Heezik, Y., & Brymer, E. (2018). Nature as a commodity: What’s good for human health might not be good for ecosystem health. Frontiers in Psychology, 9(1), 1673. https://doi.org/10.3389/fpsyg.2018.01673 Vardoulakis, S., & Kinney, P. (2019). Grand challenges in sustainable cities and health. Frontiers in Sustainable Cities, 1, 7. https://doi.org/10.3389/frsc.2019.00007 Venkatramanan, V., Shah, S., & Prasad, R. (Eds.). (2020). Global climate change and environmental policy: Agriculture perspectives. Springer Nature. Viglia, S., Civitillo, D. F., Cacciapuoti, G., & Ulgiati, S. (2018). Indicators of environmental loading and sustainability of urban systems: An emergy-based environmental footprint. Ecological Indicators, 94(1), 82-99. https://doi.org/10.1016/j.ecolind.2017.03.060 Vivien, F. D. (2008). Sustainable development: An overview of economic proposals. SAPIENS, 1(2), 227. https://doi.org/10.4000/sapiens.227 Von Bertalanffy, L. (1950). An outline of general system theory. British Journal of the Philosophy of Science, 1(2), 134-164. https://doi.org/10.1093/bjps/I.2.134 Von Bertalanffy, L. (1955). General systems theory. Main Currents in Modern Thought, 11(1), 75-83. Von Bertalanffy, L. (1956). General systems theory. General Systems, 3(1), 1-10. Von Bertalanffy, L. (1968). General system theory: Foundations, development, applications. George Braziller, New York, NY. Wachsmuth, D. (2012). Three ecologies: Urban metabolism and the society-nature opposition. The Sociological Quarterly, 53(4), 506-523. https://doi.org/10.1111/j.1533-8525.2012.01247.x Wan, X., Yang, X., Wen, Q., Gang, J., & Gan, L. (2020). Sustainable development of industry–environmental system based on resilience perspective. International Journal of Environmental Research and Public Health, 17(2), 645. https://doi.org/10.3390/ijerph17020645 Wang, X., Li, Y., Liu, N., & Zhang, Y. (2020). An urban material flow analysis framework and measurement method from the perspective of urban metabolism. Journal of Cleaner Production, 257(1), 120564. https://doi.org/10.1016/j.jclepro.2020.120564 Wang, X., Zhang, Y., & Yu, X. (2019). Characteristics of Tianjin’s material metabolism from the perspective of ecological network analysis. Journal of Cleaner Production, 239(1), 118115. https://doi.org/10.1016/j.jclepro.2019.118115 Watts, A. W., & Pinchbeck, D. (2013). The joyous cosmology: Adventures in the chemistry of consciousness. New World Library. Wegmarshaus, G. (2020). Mill, John Stuart: Principles of political economy. In Kindlers Literatur Lexikon (pp. 1-2). https://doi.org/10.1007/978-3-476-05728-0_15748-1 Weiskopf, S. R., Rubenstein, M. A., Crozier, L., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L. M., Vose, J. M., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 Wiedmann, T. O., Chen, G., & Barrett, J. (2016). The concept of city carbon maps: A case study of Melbourne, Australia. Journal of Industrial Ecology, 20(4), 676-691. https://doi.org/10.1111/jiec.12425 Wiedmann, T., Chen, G., Owen, A., Lenzen, M., Doust, M., Barrett, J., & Steele, K. (2020). Three-scope carbon emission inventories of global cities. Journal of Industrial Ecology, 25(3), 735-750. https://doi.org/10.1111/jiec.13063 Wieland, H., Giljum, S., Eisenmenger, N., Wiedenhofer, D., Bruckner, M., Schaffartzik, A., & Owen, A. (2019). Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy. Journal of Industrial Ecology, 24(3), 548-563. https://doi.org/10.1111/jiec.12975 Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404(6774), 180-183. https://doi.org/10.1038/35004572 Wolman, A. (1965). The metabolism of cities. Scientific American, 213(3), 178-190. https://doi.org/10.1038/scientificamerican0965-178 Wright, C. Y., Godfrey, L., Armiento, G., Haywood, L. K., Inglesi-Lotz, R., Lyne, K., & Schwerdtle, P. N. (2019). Circular economy and environmental health in low- and middle-income countries. Globalization and Health, 15(1). https://doi.org/10.1186/s12992-019-0501-y Xia, C., & Chen, B. (2020). Urban land-carbon nexus based on ecological network analysis. Applied Energy, 276, 115465. https://doi.org/10.1016/j.apenergy.2020.115465 Xia, L., Zhang, Y., Yu, X., Fu, C., & Li, Y. (2019). An integrated analysis of input and output flows in an urban carbon metabolism using a spatially explicit network model. Journal of Cleaner Production, 239, 118063. https://doi.org/10.1016/j.jclepro.2019.118063 Xu, W., Xie, Y., Cai, Y., Ji, L., Wang, B., & Yang, Z. (2021). Environmentally extended input-output and ecological network analysis for energy-water-CO2 metabolic system in China. Science of the Total Environment, 758, 143931. https://doi.org/10.1016/j.scitotenv.2020.143931 Yackinous, W. S. (2015). Overview of an ecological system dynamics framework. In Understanding Complex Ecosystem Dynamics (pp. 83-91). https://doi.org/10.1016/B978-0-12-802031-9.00005-x Zhai, M., Huang, G., Liu, L., & Su, S. (2018). Dynamic input-output analysis for energy metabolism system in the Province of Guangdong, China. Journal of Cleaner Production, 196(1), 747-762. https://doi.org/10.1016/j.jclepro.2018.06.084 Zhai, M., Huang, G., Liu, L., & Zhang, X. (2019). Ecological network analysis of an energy metabolism system based on input-output tables: Model development and case study for Guangdong. Journal of Cleaner Production, 227, 434-446. https://doi.org/10.1016/j.jclepro.2019.04.039 Zhang, Y. (2013). Urban metabolism: A review of research methodologies. Environmental Pollution, 178, 463-473. https://doi.org/10.1016/j.envpol.2013.03.052 Zhang, Y., Qiao, H., Chen, Z. M., & Chen, B. (2016). Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis. Applied Energy, 184, 1093-1105. https://doi.org/10.1016/j.apenergy.2015.09.076 Zhang, G., Huang, G., Liu, L., Niu, G., Li, J., & McBean, E. (2019). Ecological network analysis of an urban water metabolic system based on input-output model: A case study of Guangdong, China. Science of the Total Environment, 670, 369-378. https://doi.org/10.1016/j.scitotenv.2019.03.132 Zhang, L., Pang, M., Wang, C., & Ulgiati, S. (2016). Environmental sustainability of small hydropower schemes in Tibet: An emergy-based comparative analysis. Journal of Cleaner Production, 135, 97-104. https://doi.org/10.1016/j.jclepro.2016.06.093 Zhang, X., Huang, G., Liu, L., Zhai, M., & Li, J. (2018). Ecological and economic analyses of the forest metabolism system: A case study of Guangdong Province, China. Ecological Indicators, 95, 131-140. https://doi.org/10.1016/j.ecolind.2018.07.045 Zhang, Y., Xia, L., Fath, B. D., Yang, Z., Yin, X., Su, M., Liu, G., & Li, Y. (2016). Development of a spatially explicit network model of urban metabolism and analysis of the distribution of ecological relationships: Case study of Beijing, China. Journal of Cleaner Production, 112(1), 4304-4317. https://doi.org/10.1016/j.jclepro.2015.06.052 Zhang, Y., Yang, Z., & Yu, X. (2009). Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities. Ecological Modelling, 220(11), 1431-1442. https://doi.org/10.1016/j.ecolmodel.2009.02.001 Zhang, Y., Zheng, H., & Fath, B. D. (2014). Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing. Energy Policy, 73(1), 540-551. https://doi.org/10.1016/j.enpol.2014.04.029 Zhang, Y., Zheng, H., Fath, B. D., Liu, H., Yang, Z., Liu, G., & Su, M. (2014). Ecological network analysis of an urban metabolic system based on input–output tables: Model development and case study for Beijing. Science of the Total Environment, 468(1), 642-653. https://doi.org/10.1016/j.scitotenv.2013.08.047 Zhang, Y., Zhifeng, Y., & Xiangyi, Y. (2015). Urban metabolism: A review of current knowledge and directions for future study. Environmental Science & Technology, 49(19), 11247-11263. https://doi.org/10.1021/acs.est.5b03060 Zhao, Q., & Wen, Z. (2012). Integrative networks of the complex social-ecological systems. Procedia Environmental Sciences, 13(1), 1383-1394. https://doi.org/10.1016/j.proenv.2012.01.131 Zheng, H., Huai, W., & Huang, L. (2015). Relationship between pollution and economic growth in China: Empirical evidence from 111 cities. Journal of Urban and Environmental Engineering, 9(1), 22-31. https://doi.org/10.4090/juee.2015.v9n1.022031 Zheng, H., Li, A., Meng, F., Liu, G., Hu, Y., Zhang, Y., & Casazza, M. (2021). Ecological network analysis of carbon emissions from four Chinese metropoles in multiscale economies. Journal of Cleaner Production, 279(1), 123226. https://doi.org/10.1016/j.jclepro.2020.123226 Zhu, X., Mu, X., & Hu, G. (2019). Ecological network analysis of urban energy metabolic system—A case study of Beijing. Ecological Modelling, 404(1), 36-45. https://doi.org/10.1016/j.ecolmodel.2019.04.016 Zucchetto, J. (1975). Energy-economic theory and mathematical models for combining the systems of man and nature: Case study, the urban region of Miami, Florida. Ecological Modelling, 1(4), 241-268. https://doi.org/10.1016/0304-3800(75)90010-1 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/121584 |