Aknouche, Abdelhakim (2024): Periodically homogeneous Markov chains: The discrete state space case.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_122297.pdf Download (503kB) | Preview |
Abstract
A unified theory of periodically homogeneous Markov chains on countable state spaces with periodically time-varying transition probabilities is introduced. The finite-dimensional probability distributions of these time-periodic chains are first studied and their correspondence with the marginal distributions and transition probabilities is shown. Then, the concepts of periodic stability/regularity and limiting behaviors are proposed. The communicability and classification of states necessary for establishing periodic stability are then examined. In particular, periodic irreducibility and the main solidarity/class properties are presented, namely periodic recurrence, periodic positive recurrence, periodic transience, and periodic aperiodicity. Furthermore, sufficient conditions for periodic stochastic stability of time-periodic Markov chains are derived. Finally, various applications to some operations research models and time series analysis are considered. In particular, periodic Markov decision processes, periodic integer-valued time series models, and periodic Markov-switching time series models are examined.
Item Type: | MPRA Paper |
---|---|
Original Title: | Periodically homogeneous Markov chains: The discrete state space case |
English Title: | Periodically homogeneous Markov chains: The discrete state space case |
Language: | English |
Keywords: | Time-periodic Markov chains, Harris periodic ergodicity, periodic irreducibility, periodic recurrence, periodic stability, periodic invariant distributions, periodic integer-valued time series models, Markov-switching periodic models, periodic Markov decision process. |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C30 - General |
Item ID: | 122297 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 09 Oct 2024 13:25 |
Last Modified: | 09 Oct 2024 13:25 |
References: | Aknouche, A. and Scotto, M.G. (2024). A multiplicative thinning-based GARCH model. Journal of Time Series Analysis, 45, 4--26. Aknouche, A., Almohaimeed, B.S., and Dimitrakopoulos, S. (2024). Noising the GARCH volatility: A random coefficient GARCH model. MPRA paper, 120456. Aknouche, A., and Francq, C. (2023). Two-stage weighted least squares estimator of the conditional mean of observation driven time series. Journal of Econometrics, 237, 105174. Aknouche, A., Gouveia, S., and Scotto, M.G. (2023). Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs. arXiv:2405.19144. Aknouche, A. and Francq, C. (2022). Stationarity and ergodicity of Markov switching positive conditional mean models. Journal of Time Series Analysis, 43, 436--459. Aknouche, A., Almohaimeed, B.S., and Dimitrakopoulos, S. (2022a). Periodic autoregressive conditional duration. Journal of Time Series Analysis, 43, 5--29. Aknouche, A., Almohaimeed, B.S., and Dimitrakopoulos, S. (2022b). Forecasting transaction counts with integer-valued GARCH models. Studies in Nonlinear Dynamics and Econometrics, 26, 529--539. Aknouche, A. and Francq, C. (2021). Count and Duration time series with equal conditional stochastic and mean orders. Econometric Theory, 37, 248--280. Aknouche, A., Demmouche, N., Dimitrakopoulos, S. and Touche, N. (2020). Bayesian analysis of periodic asymmetric power GARCH models. Studies in Nonlinear Dynamics and Econometrics, 24, 1--24. Aknouche, A. and Demmouche, N. (2019). Ergodicity conditions for a double mixed Poisson autoregression. Statistics and Probability Letters, 147, 6--11. Aknouche, A., Bendjeddou, S. and Touche, N. (2018). Negative binomial quasi-likelihood inference for general integer-valued time series models. Journal of Time Series Analysis, 39, 192--211. Aknouche, A., Bentarzi, W., and Demouche, N. (2018). On periodic ergodicity of a general periodic mixed Poisson autoregression. Statistics & Probability Letters, 134, 15--21. Aknouche, A., Al-Eid, E. and Demouche, N. (2018). Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models. Statistical Inference for Stochastic Processes, 21, 485--511. Aknouche, A. (2015). Explosive strong periodic autoregression with multiplicity one. Journal of Statistical Planning and Inference, 161, 50-72. Aknouche, A. (2014). Modèles de séries chronologiques homogènes et périodiquement homogènes: stabilité, inférence et applications. Memoire d'habilitation à dirriger des recherches. University of Lille. Aknouche, A. and Kahoul, N. (2010). Optimal periodically homogeneous Markov decision process. Cinquième Conférence Internationale en Recherche Operationnelle, CIRO Marrakech. Aknouche, A. and Rabehi, N. (2010). On an independent and identically distributed mixture bilinear time series model. Journal of Time Series Analysis, 31, 113--131. Aknouche, A. and Guerbyenne, H. (2009). On some probabilistic properties of double periodic AR models. Statistics & Probability Letters, 79, 407--413. Aknouche, A. (2008). Ergodic properties of periodically stationary stochastic processes. Working paper. Aknouche, A., Rabehi, N., and Bentarzi, M. (2008). Markov-Mixture periodic ARMA models. Actes des Journées de Statistique, Modélisation et Application (JSMA'2008), USTHB, Algiers, 11/2008. Aknouche, A. (2007). Causality conditions and autocovariance calculations in PVAR models. Journal of Statistical Computation and Simulation, 77, 769--780. Aknouche, A. and Bentarzi, M. (2005). Calculation of the Fisher information of periodic ARMA models. Communication in Statistics -- Theory and Methods, 34, 891--903. Almohaimeed, B.S. (2024). Asymptotic negative binomial quasi-likelihood inference for periodic integer-valued time series models. Communications in Statistics - Theory and Methods, 53, 587--606. Almohaimeed, B.S. (2023). On an independent-switching periodic autoregressive conditional duration. Discrete and Continuous Dynamical Systems-S, 16, 2047--2059. Bac, C., Chevet, J.M, and Ghysels, E. (2001). Time series model with periodic stochastic regime switching: Part II: Applications to 16th-and 17th-Century Grain Prices. Macroeconomic Dynamics, 5, 32--55. Bibi, A. and Aknouche, A. (2010). Yule walker type estimation of periodic bilinear time series: consistency and asymptotic normality. Statistical Methods and Applications, 19, 1--30. Bittanti, S. and Colaneri, P. (2009). Periodic systems. Springer Verlag, New York. Bollerslev, T. and Ghysels, E. (1996). Periodic Autoregressive Conditional Heteroscedasticity. Journal of Business & Economic Statistics, 14, 139--151. Boyles, R.A. and Gardner, W.A. (1983). Cycloergodic properties of discrete-parameter nonstationary stochastic processes. IEEE, trans. Infor. Theory, 29, 105-114. Brandt, A. (1986). The stochastic equation Y_{n+1}=A_{n}Y_{n}+B_{n} with stationary coefficients. Advances in Applied Probability, 18, 211--220. Breiman, L. (1968). Probability. SIAM. Cai, J. (1994). A Markov model of switching regime ARCH. Journal of Business and Economic Statistics, 12, 309--316. Carton, D. (1963). Une application de l'algorithme de Howard pour des phénomènes saisonniers. Proc. 3rd International Conference Operation Research, Oslo, pp 683--691. Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall, New Jersey. Cox, D.R. and Miller, H.D. (1965). The theory of stochastic processes. Chapman and Hall, London. Floquet, G. (1883). Sur les équations différentielles linéaires à coefficients périodiques. Annales scientifiques de l'École Normale Supérieure, Série 2, 12, 47--88. Francq, C. and Zakoian, J.M. (2001). Stationarity of multivariate Markov-switching ARMA models. Journal of Econometrics, 102, 339--364. Francq, C., Roussignol, M., and Zakoian, J.M. (2001). Conditional heteroskedasticity driven by hidden Markov chains. Journal of Time Series Analysis, 22, 197--220. Francq, C. and Zakoian, J.M. (2019). GARCH models: structure, statistical inference and financial applications. Wiley, 2nd edition. Franses, P.H. (1996). Periodicity and stochastic trends in economic times series. Oxford University Press. Franses, P.H. and Paap, R. (2004). Periodic time series models. Oxford University Press. Ghysels, E. (2000). Time series model with periodic stochastic regime switching, Part I: Theory. Macroeconomic Dynamics, 4, 467--486. Ghysels, E., McCulloch, R.E. and Tsay, R.S. (1998). Bayesian inference for periodic regime-switching models. Journal of Applied Econometrics, 13, 129--143. Gladyshev, E.G. (1961). Periodically correlated random sequences. Dokl. Akad. Nauk SSSR, 137, 1026--1029. Goldie, C. and Maller, R. (2000). Stability of perpetuities. Annals of Probability, 28, 1195--1218. Gray, R.M. (2009). Probability, random processes, and ergodic properties. Springer Verlag, 2nd edt. New York. Gray, S.F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42, 27--62. Grunwald, G., Hyndman, R., Tedesco, L., and Tweedie, R. (2000). Non-Gaussian conditional linear AR(1) models. Australian and New Zealand Journal of Statistics, 42, 479--495. Haas, M., Mittnik, S. and Paolella, M. (2004). A new approach to Markov-switching GARCH models. Journal of Financial Econometrics, 2, 493--530. Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357--384. Hamilton, J.D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45, 39--70. Hamilton, J.D. and Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64 307--333. Hipel, K. and McLeod, I. (2005). Time Series Modelling of Water Resources and Environmental Systems. Elsevier, 2nd edt. Horn, R.A. and Johnson, C.R. (2013). Matrix Analysis, 2nd edition, Cambridge University Press. Hurd, H.L. & Miamee, A. (2007). Periodically correlated random sequences: spectral theory and practice. Wiley-Interscience. Jacobson, M.W., Shimkin, N. and Shwartz, A. (2003). Markov Decision Processes with slow scale periodic decisions. Mathematics of Operations Research, 28, 777--800. Karlin, S. and Taylor, H.E. (1975). A first course in stochastic processes. Academic Press. New York. Kemeny, J.G. and Snell, L. (1976). Finite Markov chains. Springer Verlag. Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics, 27, 363--94. Lindvall, T. (1982). On coupling of continuous time renewal processes. Journal of Applied Probability, 19, 82--89. McKenzie, E. (1985). Some simple models for discrete variate time series. Water Resources Bulletin, 21, 645--650. Meyer, R.A. and Burrus, C.S. (1975). A unified analysis of multivariate and periodically time-varying digital filters. IEEE Trans. Circuits and Systems, 22, 162--168. Meyn, S. and Tweedie, R. (2009). Markov chains and stochastic stability. Springer Verlag, 2nd edt., New York. Monteiro, M., Scotto, M.G., and Pereira, I. (2010). Integer-valued autoregressive processes with periodic structure. Journal of Statistical Planning and Inference, 140, 1529--1541. Norris, J. (2002). Markov chains. Cambridge University Press. Pagano, M. (1978). On periodic and multiple autoregression. Annals of Statistics, 6, 1310--1317. Riis, J.O. (1965). Discounted Markov programming in a periodic process. Operations Research, 13, 920--929. Seneta, E. (1980). Non-negative Matrices and Markov Chains. Springer Verlag. Steutel, F.W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability, 7, 893--899. Vervaat, W. (1979). On a stochastic difference equation and a representation of non negative infinitely divisible random variables. Advances in Applied Probability, 11, 750--783. Veugen, L.M., Wal, J., and Wessels, J. (1983). The numerical exploitation of periodicity in Markov decision processes. OR Spectrum, 5, 97--103. White, D. J. (1993). Markov decision processes. Wiley, New York. Yao, J.F. (2001). On square-integrability of an AR process with Markov switching. Statistics and Probability Letters, 52, 265--270. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122297 |
Available Versions of this Item
-
Periodically homogeneous Markov chains: The discrete state space case. (deposited 09 Oct 2024 13:24)
- Periodically homogeneous Markov chains: The discrete state space case. (deposited 09 Oct 2024 13:25) [Currently Displayed]