Leogrande, Angelo (2024): From Discounts to Delivery: Decoding Customer Care Interactions in Warehousing.
PDF
MPRA_paper_122693.pdf Download (4MB) |
Abstract
The present research has delved deeper into the complex relationship of customer care calls with purchasing behavior in a WM system and has developed actionable insights to optimize operations. In this regard, the following critical factors have been considered: product attributes-cost, weight, and discount-on one hand, and delivery performance in terms of timeliness and reliability on the other, with a view to understand their impacts on customer satisfaction and interactions. Key takeaways are that high volumes of customer care calls reflect operational failure; there is a delay or expectation mismatch, and hence one needs strong process optimization. Also, heavy products, since perceived to be reliable, have fewer customer enquiries; lighter, cheap products cause more frequent queries since impulsive buying and lack of information occur. It further identifies timeliness of delivery as a main determinant of customer satisfaction while delays in delivery result in heightened discontent and rising demands for support. The study underlines the strategic relevance of advanced analytics, machine learning, and real-time monitoring to finally resolve the recurring inefficiencies. This may also be a good basis on which recommendations could be made concerning the use of predictive analytics for demand forecasting, effective logistical frameworks, and methods of customer service that would be in line with product-specific needs. Discounts become a two-edged factor: enhancing satisfaction but threatening brand value when used too frequently. In the end, strategies with discounts should be put into balance, proactive customer engagement should be there, with crystal clear communications with them, and the products to be more correctly described. The given study also identified how a warehouse clears the expectation from customers by applying data-driven strategies for better efficiency, customer satisfaction, and long-term loyalty. The above findings provide a comprehensive road map on how to integrate technology and customer-centric strategies in modern warehouse management.
Item Type: | MPRA Paper |
---|---|
Original Title: | From Discounts to Delivery: Decoding Customer Care Interactions in Warehousing |
English Title: | From Discounts to Delivery: Decoding Customer Care Interactions in Warehousing |
Language: | English |
Keywords: | e-Commerce, Warehouse, Logistics, Machine Learning, Tobit. |
Subjects: | L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L90 - General L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L91 - Transportation: General L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L92 - Railroads and Other Surface Transportation L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L93 - Air Transportation L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L94 - Electric Utilities L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L98 - Government Policy |
Item ID: | 122693 |
Depositing User: | Dr Angelo Leogrande |
Date Deposited: | 19 Nov 2024 14:22 |
Last Modified: | 19 Nov 2024 14:22 |
References: | Acevedo, A., Duran, C., Kuo, M. J., Ciucci, S., Schroeder, M., & Cannistraci, C. V. (2022). Measuring Group Separability in Geometrical Space for Evaluation of Pattern Recognition and Dimension Reduction Algorithms. IEEE Access, 10, 22441-22471. Agarwal, A., Kenney, A. M., Tan, Y. S., Tang, T. M., & Yu, B. (2023). MDI+: A flexible random forest-based feature importance framework. arXiv preprint arXiv:2307.01932. Aguilar-Ruiz, J. S., & Michalak, M. (2022). Multiclass classification performance curve. IEEE Access, 10, 68915-68921. Ahmed, A. M., & Mohamed, A. A. (2023). Inbound, outbound disturbances and supply chain vulnerability of firms operating in post-conflict zones: the case of Somalia. Journal of System and Management Sciences, 13(3), 352-363. Albadrani, A., Zohdy, M. A., & Olawoyin, R. (2020, July). An approach to optimize future inbound logistics processes using machine learning algorithms. In 2020 IEEE International Conference on Electro Information Technology (EIT) (pp. 402-406). IEEE. Ali, A. (2020, October). Ensemble learning model for prediction of natural gas spot price based on least squares boosting algorithm. In 2020 International conference on data analytics for business and industry: way towards a sustainable economy (ICDABI) (pp. 1-6). IEEE. Apolonio, S. D., & Norona, M. I. (2021). Automating inventory management in distribution centers of a leading fast-moving consumer goods (FMCG) industry player in the beverage market: A supply chain 4.0 journey. In Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management (pp. 1602-1614). Bajpai, D., & He, L. (2020, September). Evaluating KNN performance on WESAD dataset. In 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 60-62). IEEE. Barulina, M., Okunkov, S., Ulitin, I., & Sanbaev, A. (2023). Sensitivity of Modern Deep Learning Neural Networks to Unbalanced Datasets in Multiclass Classification Problems. Applied Sciences, 13(15), 8614. Belinda, L., Dahbia, I., & Zahira, C. (2023, October). A Hybrid Artificial Intelligence Approach for Early Stroke Prediction. In 2023 5th International Conference on Pattern Analysis and Intelligent Systems (PAIS) (pp. 1-8). IEEE. Bemporad, A. (2022). A piecewise linear regression and classification algorithm with application to learning and model predictive control of hybrid systems. IEEE Transactions on Automatic Control, 68(6), 3194-3209. Bernard, J., Hutter, M., Zeppelzauer, M., Sedlmair, M., & Munzner, T. (2021). ProSeCo: Visual analysis of class separation measures and dataset characteristics. Computers & Graphics, 96, 48-60. Bottani, E., Tebaldi, L., Rossi, M., & Casella, G. (2020, September). A storage assignment simulation model for optimizing processes in an e-commerce warehouse of a fashion supply chain. In International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (pp. 1-7). CAL-TEK Srl. Brylla, D., & Walsh, G. (2022). When Faster Online Delivery Backfires: Examining the Negative Consequences of Split Deliveries. International Journal of Electronic Commerce, 26(4), 497-525. Brzezinski, D., Stefanowski, J., Susmaga, R., & Szczech, I. (2019). On the dynamics of classification measures for imbalanced and streaming data. IEEE transactions on neural networks and learning systems, 31(8), 2868-2878. Caballero, L., Jojoa, M., & Percybrooks, W. S. (2020). Optimized neural networks in industrial data analysis. SN Applied Sciences, 2(2), 300. Candra, F. A., Sutanto, J. E., & Sondak, M. R. (2022). The influence of product quality, service quality, and timeliness of delivery on repurchase intention at cake by tenggilis surabaya. Cao, B., Liu, Y., Hou, C., Fan, J., Zheng, B., & Yin, J. (2020). Expediting the accuracy-improving process of svms for class imbalance learning. IEEE Transactions on Knowledge and Data Engineering, 33(11), 3550-3567. Carrington, A. M., Fieguth, P. W., Qazi, H., Holzinger, A., Chen, H. H., Mayr, F., & Manuel, D. G. (2020). A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms. BMC medical informatics and decision making, 20, 1-12. Chandrasekar, K. S., & Geetha, P. (2021). A new formation of supervised dimensionality reduction method for moving vehicle classification. Neural Computing and Applications, 33(13), 7839-7850. Chen, C., & Liu, J. (2024, April). Research of Cloud-Native AS/RS Warehouse Management and Control Platform Architecture. In 2024 5th International Conference on Computer Engineering and Application (ICCEA) (pp. 277-285). IEEE. Chen, S., Lei, J., & Moinzadeh, K. (2023). Inventory and supply chain management with auto‐delivery subscription. Production and Operations Management, 32(12), 4068-4087. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj computer science, 7, e623. Choudhary, R., & Shukla, S. (2022). Reduced-Kernel weighted extreme learning machine using universum data in feature space (RKWELM-UFS) to handle binary class imbalanced dataset classification. Symmetry, 14(2), 379. Corrêa, A. C. (2023). Supply Chain Control Tower: Definitions and Gaps Between Literature and Application in Industries. Correndo, A. A., Rosso, L. H. M., Hernandez, C. H., Bastos, L. M., Nieto, L., Holzworth, D., & Ciampitti, I. A. (2022). metrica: an R package to evaluate prediction performance of regression and classification point-forecast models. Journal of Open Source Software, 7(79), 4655. Da Silva, L. E. B., Melton, N. M., & Wunsch, D. C. (2020). Incremental cluster validity indices for online learning of hard partitions: Extensions and comparative study. IEEE Access, 8, 22025-22047. Dai, Z., Li, P., Zhu, M., Zhu, H., Liu, J., Zhai, Y., & Fan, J. (2023). Dynamic prediction for attitude and position of shield machine in tunneling: A hybrid deep learning method considering dual attention. Advanced Engineering Informatics, 57, 102032. de Oliveira, A. V., Pimentel, C. M. O., Godina, R., Matias, J. C. D. O., & Garrido, S. M. P. (2022). Improvement of the Logistics Flows in the Receiving Process of a Warehouse. Logistics, 6(1), 22. Del Moral, P., Nowaczyk, S., & Pashami, S. (2022). Why is multiclass classification hard?. IEEE Access, 10, 80448-80462. Dewi, I. K., & Shofa, R. N. (2023). Development of warehouse management system to manage warehouse operations. International Journal of Applied Information Systems and Informatics (JAISI), 1(1). Doganer, A., Yaman, S., Eser, N., & Metin, T. O. (2020). Different machine learning methods based prediction of mild cognitive impairment. Du, W., Peng, X., & Feng, D. (2022, June). Product Key Characteristics Mapping Transformation Method Based on Customer Demand. In Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics (pp. 349-353). DÜNDAR, A. O., & ÖZTÜRK, R. (2020). The effect of on-time delivery on customer satisfaction and loyalty in channel integration. Business & Management Studies: An International Journal, 8(3), 2675-2693. Feng, Y., & Tian, L. (2021). Issues and solutions in biomarker evaluation when subclasses are involved under binary classification. Statistical Methods in Medical Research, 30(1), 87-98. Firdausanti, N. A., Fatyanosa, T. N., Data, M., Mendonça, I., & Aritsugi, M. (2022, December). Two-stage sampling: A framework for imbalanced classification with overlapped classes. In 2022 IEEE International Conference on Big Data (Big Data) (pp. 271-280). IEEE. Fu, G. H., Wu, Y. J., Zong, M. J., & Yi, L. Z. (2020). Feature selection and classification by minimizing overlap degree for class-imbalanced data in metabolomics. Chemometrics and Intelligent Laboratory Systems, 196, 103906. Gajowniczek, K., & Ząbkowski, T. (2021). ImbTreeAUC: An R package for building classification trees using the area under the ROC curve (AUC) on imbalanced datasets. SoftwareX, 15, 100755. Garver, M. S., & Williams, Z. (2020). Utilizing relative weight analysis in customer satisfaction research. International Journal of Market Research, 62(2), 158-175. Gegeleso, O. M. (2020). Effect of Warehousing Operation on Inbound Logistics Practices of Consumer Goods Industries Performce in South Western Nigeria. Ghiasi-Shirazi, S. K. (2022). Revisiting Classical Multiclass Linear Discriminant Analysis with a Novel Prototype-based Interpretable Solution. arXiv preprint arXiv:2205.00668. Gong, N., Wang, Z., Chen, S., Liu, G., & Xin, S. (2020, November). Decision boundary extraction of classifiers. In Journal of Physics: Conference Series (Vol. 1651, No. 1, p. 012031). IOP Publishing. GONZALEZ-RAMIREZ, A., LOPEZ, J., TORRES-ROMAN, D., & YAÑEZ-VARGAS, I. (2021). Analysis of multi-class classification performance metrics for remote sensing imagery imbalanced datasets. Journal of Quantitative and Statistical Analysis, 8-22. Guénard, G., & Legendre, P. (2022). Hierarchical clustering with contiguity constraint in R. Journal of statistical software, 103, 1-26. Guo, D., Duan, P., Yang, Z., Zhang, X., & Su, Y. (2024). Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM)-Attention-Based Prediction of the Amount of Silica Powder Moving in and out of a Warehouse. Energies, 17(15), 3757. Guo, Y., Wang, W., & Wang, X. (2021). A robust linear regression feature selection method for data sets with unknown noise. IEEE Transactions on Knowledge and Data Engineering, 35(1), 31-44. Han, S., & Kim, H. (2021). Optimal feature set size in random forest regression. Applied Sciences, 11(8), 3428. Hancock, J., Khoshgoftaar, T. M., & Johnson, J. M. (2022, December). Informative evaluation metrics for highly imbalanced big data classification. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1419-1426). IEEE. Herbe,A., Estermann, Z., Holzwarth, V., & vom Brocke, J. (2024). How to effectively use distributed ledger technology in supply chain management?. International Journal of Production Research, 62(7), 2522-2547. Hietasari, D. N., Subianto, D. I., & Adi, T. W. (2024, January). Conceptual framework of warehouse management system with auto suggesting features for FIFO/FEFO implementation towards lean warehousing. In AIP Conference Proceedings (Vol. 2951, No. 1). AIP Publishing. Hinterreiter, A., Ruch, P., Stitz, H., Ennemoser, M., Bernard, J., Strobelt, H., & Streit, M. (2020). ConfusionFlow: A model-agnostic visualization for temporal analysis of classifier confusion. IEEE Transactions on Visualization and Computer Graphics, 28(2), 1222-1236. Hu, X., & Weisel, E. (2020). Inbound Logistics Optimization. Indriyani, S. (2020). Analyzing the Warehouse Management System at Pt. Pos Manado. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 8(4). Iparragirre, A., Lumley, T., Barrio, I., & Arostegui, I. (2023). Variable selection with LASSO regression for complex survey data. Stat, 12(1), e578. Janitza, S., & Hornung, R. (2018). On the overestimation of random forest’s out-of-bag error. PloS one, 13(8), e0201904. Kaliappan, J., Srinivasan, K., Mian Qaisar, S., Sundararajan, K., & Chang, C. Y. (2021). Performance evaluation of regression models for the prediction of the COVID-19 reproduction rate. Frontiers in Public Health, 9, 729795.Kara, K., Yalçın, G. C., & Edinsel, S. (2023). Warehouse manager selection by CRITIC-MULTIMOORA hybrid method based on single-valued neutrosophic sets. Journal of Maritime Transport and Logistics, 4(1), 48-64. Karim, N. H., Abdul Rahman, N. S. F., Md Hanafiah, R., Abdul Hamid, S., Ismail, A., Abd Kader, A. S., & Muda, M. S. (2021). Revising the warehouse productivity measurement indicators: ratio-based benchmark. Maritime Business Review, 6(1), 49-71. Kayanan, M., & Wijekoon, P. (2020). Stochastic Restricted LASSO‐Type Estimator in the Linear Regression Model. Journal of Probability and Statistics, 2020(1), 7352097. Khatoon, S., Zhengliang, X., & Hussain, H. (2020). The Mediating Effect of customer satisfaction on the relationship between Electronic banking service quality and customer Purchase intention: Evidence from the Qatar banking sector. Sage Open, 10(2), 2158244020935887. Kim, B., & Kim, J. (2020). Adjusting decision boundary for class imbalanced learning. IEEE Access, 8, 81674-81685. Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label classifier performance evaluation with confusion matrix. Computer Science & Information Technology, 1, 1-14. Kumar, A., & Asthana, S. (2023). From Godown to Warehouse Management: Transformation at eKart, An Illustrative Case Study. Jindal Journal of Business Research, 12(1), 96-110. Langer, S. (2021). Approximating smooth functions by deep neural networks with sigmoid activation function. Journal of Multivariate Analysis, 182, 104696. Laskowski, J. F., & Tomiło, P. (2023). A new AI-based method for clustering survey responses. Journal of Modern Science, 54(5), 355-377. Aksan, F., Jasiński, M., Sikorski, T., Kaczorowska, D., Rezmer, J., Suresh, V., ... & Janik, P. (2021). Clustering methods for power quality measurements in virtual power plant. Energies, 14(18), 5902. Leevy, J. L., Khoshgoftaar, T. M., & Hancock, J. (2022, October). Evaluating performance metrics for credit card fraud classification. In 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1336-1341). IEEE. Li, L., Pan, Y., Ma, X., & Liu, D. (2024, April). Simulation Research on the Inbound and Outbound Process of ZTO Distribution Center Warehousing System Based on Flexsim. In The International Conference on Artificial Intelligence and Logistics Engineering (pp. 281-289). Cham: Springer Nature Switzerland. Li, Z., & Wei, W. (2022). Modular design for optimum granularity with auto-generated DSM and improved elbow assessment method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(4), 413-426. Li, Z., Nie, F., Wu, D., Wang, Z., & Li, X. (2023). Sparse trace ratio LDA for supervised feature selection. IEEE transactions on cybernetics, 54(4), 2420-2433. Lim, Y., Lee, J., & Kim, H. (2021). Customer Satisfaction and Implied Cost of Equity: Moderating Effects of Product Market Conditions and Chief Marketing Officer. Liu, G. (2022). A new index for clustering evaluation based on density estimation. arXiv preprint arXiv:2207.01294. Liu, H., Lobschat, L., Verhoef, P. C., & Zhao, H. (2021). The effect of permanent product discounts and order coupons on purchase incidence, purchase quantity, and spending. Journal of Retailing, 97(3), 377-393. Liu, J., Cai, X., & Niranjan, M. (2023). GO-LDA: Generalised optimal linear discriminant analysis. arXiv preprint arXiv:2305.14568. Liu, L., & Yang, X. (2022). A multi-objective model and algorithms of aggregate production planning of multi-product with early and late delivery. Algorithms, 15(6), 182. Loecher, M. (2022). Unbiased variable importance for random forests. Communications in Statistics-Theory and Methods, 51(5), 1413-1425. Luo, H., Ma, S., Rao, J., Zheng, Z., Li, M., & Xu, H. (2020, November). Research on the influence of logistics service quality on post-purchase behavior in e-business. In 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT) (pp. 31-34). IEEE. Luque, A., Mazzoleni, M., Carrasco, A., & Ferramosca, A. (2022). Visualizing Classification Results: Confusion Star and Confusion Gear. Ma, Y., & Maciejewski, R. (2020). Visual analysis of class separations with locally linear segments. IEEE Transactions on Visualization and Computer Graphics, 27(1), 241-253. Machkour, J., Muma, M., Alt, B., & Zoubir, A. M. (2020). A robust adaptive Lasso estimator for the independent contamination model. Signal Processing, 174, 107608. Maheshwari, P., Kamble, S., Kumar, S., Belhadi, A., & Gupta, S. (2023). Digital twin-based warehouse management system: a theoretical toolbox for future research and applications. The International Journal of Logistics Management, (ahead-of-print). Mane, S., Bhuva, J., & Patel, S. (2020). Implementation of 5S to Set Up Inventory Control System with HTML Coded Spare Management System. In Proceedings of International Conference on Intelligent Manufacturing and Automation: ICIMA 2020 (pp. 327-336). Springer Singapore. Martínez, A., Schmuck, C., Pereverzyev Jr, S., Pirker, C., & Haltmeier, M. (2020). A machine learning framework for customer purchase prediction in the non-contractual setting. European Journal of Operational Research, 281(3), 588-596. Mirza, B., Haroon, D., Khan, B., Padhani, A., & Syed, T. Q. (2021). Deep generative models to counter class imbalance: A model-metric mapping with proportion calibration methodology. IEEE Access, 9, 55879-55897. Mulindwa, D. B., & Du, S. (2023). An n-Sigmoid Activation Function to Improve the Squeeze-and-Excitation for 2D and 3D Deep Networks. Münsberg, T. M., Hvam, L., & Tsintzou, L. (2022). Optimizing the Integration Process of New Customers in a 3PL Warehouse. In 10th International Conference on Mass Customization andPersonalization–Community of Europe (pp. 96-101). University of Novi Sad. Naboureh, A., Ebrahimy, H., Azadbakht, M., Bian, J., & Amani, M. (2020). RUESVMs: An ensemble method to handle the class imbalance problem in land cover mapping using Google Earth Engine. Remote Sensing, 12(21), 3484. Namdar, K., Haider, M. A., & Khalvati, F. (2021). A modified AUC for training convolutional neural networks: taking confidence into account. Frontiers in artificial intelligence, 4, 582928. Nedel'Ko Victor, M. (2023). On the Properties of Bias-Variance Decomposition for kNN Regression. Известия Иркутского государственного университета. Серия: Математика, 43, 110-121. Nguyen, D. T., Pham, V. T., Tran, D. M., & Pham, D. B. T. (2020). Impact of service quality, customer satisfaction and switching costs on customer loyalty. The Journal of Asian Finance, Economics and Business, 7(8), 395-405. Niemi, T., Hameri, A. P., Kolesnyk, P., & Appelqvist, P. (2020). What is the value of delivering on time?. Journal of Advances in Management Research, 17(4), 473-503. Nissa, N., Jamwal, S., & Neshat, M. (2024). A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques. Computation, 12(1), 15. Obi, J. C. (2023). A comparative study of several classification metrics and their performances on data. World Journal of Advanced Engineering Technology and Sciences, 8(1), 308-314. Odunjo, F. O. O. (2020). A study of the impact of logistic inbound and outbound operations in organizational performance at Dangote Cement Industries (Doctoral dissertation, Dublin, National College of Ireland). Oliveira, A. A. A. D. M., Espadoto, M., Hirata Júnior, R., & Telea, A. C. (2022). SDBM: supervised decision boundary maps for machine learning classifiers. In Proceedings. Omer, P. A. (2022). Improving Prediction Accuracy of Lasso and Ridge Regression as an Alternative to LS Regression to Identify Variable Selection Problems. DOI: https://doi. org/10.31972/ticma2022. Onumanyi, A. J., Molokomme, D. N., Isaac, S. J., & Abu-Mahfouz, A. M. (2022). AutoElbow: An automatic elbow detection method for estimating the number of clusters in a dataset. Applied Sciences, 12(15), 7515. Osojnik, A., Džeroski, S., & Kocev, D. (2016). Option predictive clustering trees for multi-target regression. In Discovery Science: 19th International Conference, DS 2016, Bari, Italy, October 19–21, 2016, Proceedings 19 (pp. 118-133). Springer International Publishing. Ouma, Y., Nkwae, B., Moalafhi, D., Odirile, P., Parida, B., Anderson, G., & Qi, J. (2022). Comparison of machine learning classifiers for multitemporal and multisensor mapping of urban LULC features. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 681-689. Paranjape, P. N., Dhabu, M. M., & Deshpande, P. (2021). dSubSign: Classification of Instance-Feature Data Using Discriminative Subgraphs as Class Signatures. International Journal of Software Engineering and Knowledge Engineering, 31, 917-947 Pawara, P., Okafor, E., Groefsema, M., He, S., Schomaker, L. R., & Wiering, M. A. (2020). One-vs-One classification for deep neural networks. Pattern Recognition, 108, 107528. Pendrill, L. R., Melin, J., Stavelin, A., & Nordin, G. (2023). Modernising Receiver Operating Characteristic (ROC) Curves. Algorithms, 16(5), 253. Pereira, M. T., Santos, E., Sá, J. C., Oliveira, M., & Ferreira, L. P. (2022, June). Improvements in the Warehouse of a Danish Transport and Logistics Company Through a WMS Implementation. In International Conference on Flexible Automation and Intelligent Manufacturing (pp. 325-336). Cham: Springer International Publishing. Phan, M. H., & Tran, A. T. (2022). Development a warehouse management information system. Applied Mechanics and Materials, 907, 131-143. Plevris, V., Solorzano, G., Bakas, N. P., & Ben Seghier, M. E. A. (2022, November). Investigation of performance metrics in regression analysis and machine learning-based prediction models. In 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022). European Community on Computational Methods in Applied Sciences. Polim, D. N., & Lestari, Y. D. (2023). Business process reengineering to excellence warehouse management system: a case study of retail industry. Jurnal Syntax Transformation, 4(1), 92-109. Praptodiyono, S., Santoso, M. I., Sukarna, R. H., Muhammad, F., & Fuad, A. (2023, June). The design of an RFID-Based warehouse management system for AgroHUB banten. In AIP Conference Proceedings (Vol. 2760, No. 1). AIP Publishing. Pratiwi, H., Windarto, A. P., Susliansyah, S., Aria, R. R., Susilowati, S., Rahayu, L. K., ... & Rahadjeng, I. R. (2020, February). Sigmoid activation function in selecting the best model of artificial neural networks. In Journal of Physics: Conference Series (Vol. 1471, No. 1, p. 012010). IOP Publishing. Qin, Y., Zhaofa, Y., Xuzheng, L., Zufang, Z., Weijie, C., & Sheng, R. (2021). Product module attribute parameter configuration model considering customer requirements preferences. Mathematical Problems in Engineering, 2021(1), 6632057. Rahman, M., & Asadujjaman, M. (2021, September). Implementation of artificial neural network on regression analysis. In 2021 5th Annual Systems Modelling Conference (SMC) (pp. 1-7). IEEE. Rector, L. R., & Scott, B. P. (2021). Hoffman Inbound Inventory Management System Improvement. Ricardianto, P., Kurniawan, I., Ikawati, I., Gutomo, T., Sijabat, E., Mahadita, A., ... & Endri, E. (2023). Service quality and timeliness: Empirical evidence on the parcel delivery service in Indonesia. Uncertain Supply Chain Management, 11(4), 1645-1656. Ridho, F., Hartono, S., & Istiqomah, I. (2021). Easy, quality of service, and timeliness of delivery to customer satisfaction. Almana: Jurnal Manajemen dan Bisnis, 5(2), 184-191. Riyanto, S., Imas, S. S., Djatna, T., & Atikah, T. D. (2023). Comparative Analysis using Various Performance Metrics in Imbalanced Data for Multi-class Text Classification. International Journal of Advanced Computer Science and Applications, 14(6). Ruisánchez, I., Jiménez-Carvelo, A. M., & Callao, M. P. (2021). ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta, 222, 121564. Salekshahrezaee, Z., Leevy, J. L., & Khoshgoftaar, T. M. (2022, August). A class-imbalanced study with feature extraction via pca and convolutional autoencoder. In 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI) (pp. 63-68). IEEE. Satish, R., Manoj, K., & Vp, S. (2023). A study on warehouse management and material handling process at polkart logistics. Russian Law Journal, 11(11S), 16-22. Sharma, A., Pratap, A., Vyas, K., & Mishra, S. (2022, December). Machine learning approach: Consumer buying behavior analysis. In 2022 IEEE Pune Section International Conference (PuneCon) (pp. 1-10). IEEE. Sharma, D. R., & Singh, B. (2023). Understanding the relationship between customer satisfaction, customer engagement and repeat purchase behaviour. Vision, 27(4), 449-457. Shu, Q., Hu, T., & Liu, S. (2020, May). Random Forest Algorithm based on GAN for imbalanced data classification. In Journal of Physics: Conference Series (Vol. 1544, No. 1, p. 012014). IOP Publishing. Sitarz, M. (2022). Extending F1 metric, probabilistic approach. arXiv preprint arXiv:2210.11997. Song, Y., & Hua, X. (2022). Implementation of data mining technology in bonded warehouse inbound and outbound goods Trade. Journal of Organizational and End User Computing (JOEUC), 34(3), 1-18. Stepišnik, T., Osojnik, A., Džeroski, S., & Kocev, D. (2020). Option predictive clustering trees for multi-target regression. Computer Science and Information Systems, 17(2), 459-486. Sugriyono, S., & Siregar, M. U. (2020). Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset. Suh, A., Appleby, G., Anderson, E. W., Finelli, L., & Cashman, D. (2021, October). Communicating Performance of Regression Models Using Visualization in Pharmacovigilance. In 2021 IEEE Workshop on Visual Analytics in Healthcare (VAHC) (pp. 6-13). IEEE. Sun, P. Z., Zuo, T. Y., Law, R., Wu, E. Q., & Song, A. (2023). Neural network ensemble with evolutionary algorithm for highly imbalanced classification. IEEE Transactions on Emerging Topics in Computational Intelligence, 7(5), 1394-1404. Supriyanto, A., Sutrisna, S., & Listen, G. (2021). The Relation of Price, Product Quality And Brand Image To Customer Loyalty In Manufacturing Companies. Takada, M., Suzuki, T., & Fujisawa, H. (2020). Independently Interpretable Lasso for Generalized Linear Models. Neural computation, 32(6), 1168-1221. Thölke, P., Mantilla-Ramos, Y. J., Abdelhedi, H., Maschke, C., Dehgan, A., Harel, Y., ... & Jerbi, K. (2023). Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data. NeuroImage, 277, 120253. Tigga, O., Pal, J., & Mustafi, D. (2023, February). A Comparative Study of Multiple Linear Regression and K Nearest Neighbours using Machine Learning. In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-5). IEEE. Troebs, C. C., Wagner, T., & Herzog, W. (2021). Do Customer Discounts Affect Frontline Employees?. Journal of Service Research, 24(3), 390-404. van Dongen, S. (2022). Fast multi-resolution consensus clustering. bioRxiv, 2022-10. Verbakel, J. Y., Steyerberg, E. W., Uno, H., De Cock, B., Wynants, L., Collins, G. S., & Van Calster, B. (2020). ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. Journal of Clinical Epidemiology, 126, 207-216. Vuttipittayamongkol, P., Elyan, E., & Petrovski, A. (2021). On the class overlap problem in imbalanced data classification. Knowledge-based systems, 212, 106631. Wahyuni, D., Sembiring, M. T., Budiman, I., & Hutagalung, T. R. (2021, March). Modelling Operation of Logistics Management in Modern Market: A Case Study in Indonesian Retail Company. In IOP Conference Series: Earth and Environmental Science (Vol. 709, No. 1, p. 012052). IOP Publishing. Wei, B. (2023). A brand-new clustering method and analysis system designed for revealing the truth of the high-dimension large data deciphered the complex composition structure of human brain endothelial cells from single-cell RNA sequence data. bioRxiv, 2023-06. Wong, P., Thant, P., Yadav, P., Antaliya, R., & Woo, J. (2023). Using Spark Machine Learning Models to Perform Predictive Analysis on Flight Ticket Pricing Data. arXiv preprint arXiv:2310.07787. Wu, J., Lin, X., Yang, X., Li, S., Zhang, B., & Gao, L. (2023, September). Research on random forest algorithm based on oversampling and feature selection. In 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC) (Vol. 7, pp. 1531-1537). IEEE. Xu, H. (2022). Prediction of Students’ Performance Based on the Hybrid IDA‐SVR Model. Complexity, 2022(1), 1845571. Yan, C., Chang, X., Luo, M., Zheng, Q., Zhang, X., Li, Z., & Nie, F. (2020). Self-weighted robust LDA for multiclass classification with edge classes. ACM Transactions on Intelligent Systems and Technology (TIST), 12(1), 1-19. Yanchenko, A. Y., & Repilova, M. M. (2023). On the question of applying discounts in the marketing process. Entrepreneur’ s Guide, 16(4). Yaqub, R. M. S., Akram, H. M. Z., Ahmed, N., & Ali, M. Q. (2023). Moderating Role of Worth of Win-Back Offer on the Relationship of Post Purchase Regret, Social Capital, and Prior Experience with Switch Back Intentions among Prepaid Mobile Subscribers. Pakistan Journal of Humanities and Social Sciences, 11(2), 1013-1026. Yildiz, B., & Savelsbergh, M. (2020). Pricing for delivery time flexibility. Transportation Research Part B: Methodological, 133, 230-256. Zhang, G., & Gionis, A. (2023). Regularized impurity reduction: accurate decision trees with complexity guarantees. Data mining and knowledge discovery, 37(1), 434-475. Zhao, L., Lee, S., & Jeong, S. P. (2021). Decision tree application to classification problems with boosting algorithm. Electronics, 10(16), 1903. Zhao, M., Ma, Z., Zhou, Z., & Zheng, K. (2021, October). Wspeed: drone energy optimization for multiple-package delivery considering weight changes. In 2021 International Conference on Space-Air-Ground Computing (SAGC) (pp. 1-6). IEEE. Zorarpacı, E. (2021, June). A hybrid dimension reduction based linear discriminant analysis for classification of high-dimensional data. In 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1028-1036). IEEE. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122693 |