Logo
Munich Personal RePEc Archive

Data-Driven Welding Quality Assessment: Leveraging IoT and Machine Learning in Industrial Practice

Magaletti, Nicola and Notarnicola, Valeria and Di Molfetta, Mauro and Mariani, Stefano and Leogrande, Angelo (2025): Data-Driven Welding Quality Assessment: Leveraging IoT and Machine Learning in Industrial Practice. Published in: (24 April 2025)

[thumbnail of MPRA_paper_124548.pdf] PDF
MPRA_paper_124548.pdf

Download (845kB)

Abstract

The paper investigates the deployment of data analytics and machine learning to improve welding quality in Tecnomulipast srl, a small-to-medium sized manufacturing firm located in Puglia, Italy. The firm produces food machine components and more recently mechanized its laser welding process with the introduction of an IoT-enabled system integrating photographic control. The investment, underwritten by the Apulia Region under PIA (Programmi Integrati di Agevolazione) allowed Tecnomulipast to not only mechanize its production line but also embark upon wider digital transformation. This involved the creation of internal data analytics infrastructures that have the capability to underpin machine learning and artificial intelligence applications. This paper addresses a prediction of weld bead width (LC) with a dataset of 1,000 observations. Input variables are laser power (PL), pulse time (DI), frequency (FI), beam diameter (DF), focal position (PF), travel speed (VE), trajectory accuracy (TR), laser angle (AN), gas flow (FG), gas purity (PG), ambient temperature (TE), and penetration depth (PE). The parameters were exploited to build and validate some supervised machine learning algorithms like Decision Trees, Random Forest, K-Nearest Neighbors, Support Vector Machines, Neural Networks, and Linear Regression. The performance of the models was measured by MSE, RMSE, MAE, MAPE, and R². Ensemble methods like Random Forest and Boosting performed the highest. Feature importance analysis determined that laser power, gas flow, and trajectory accuracy are the key variables. This project showcases the manner in which Tecnomulipast has benefited from public investment to introduce digital transformation and adopt data-driven strategies within Industry 4.0.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.