Jena, Pratap Kumar and Paltasingh, Kirtti Ranjan and Mohapatra, Souryabrata and Mishra, Ashok (2025): Impact of weather variability on crop yields and land use dynamics in Odisha, India: Short-and long-term effects. Published in: Bio-based and Applied Economics
![]() |
PDF
MPRA_paper_125806.pdf Download (677kB) |
Abstract
Weather variability disrupts food grain production and agricultural sustainability. While existing literature highlights the stationary relationship between weather variables and agricultural outcomes, it often overlooks their bearing on land use changes. This study investigates the dynamic effects of weather variations on crop yields, farmland use and intensity in Odisha, India, using district-level data from 2001-18. By employing a panel autoregressive distributive lag model, we assess long-and short-term relationships between weather parameters and agricultural yields. Results reveal a negative yield elasticity to rainfall deviation, ranging from-0.16 for wheat to-0.48 for green gram in the long term. In the short term, however, elasticity is positive for some pulses (green gram, urad) and oilseeds (groundnuts). Rainfall deviation and maximum temperature adversely affect the rate and intensity of farmland use but enhance crop diversification in both the short and long term.
Item Type: | MPRA Paper |
---|---|
Original Title: | Impact of weather variability on crop yields and land use dynamics in Odisha, India: Short-and long-term effects |
Language: | English |
Keywords: | Climate change; Crop yield response; Land use intensity; Panel ARDL model; Odisha, India |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C33 - Panel Data Models ; Spatio-temporal Models Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation ; Agriculture and Environment Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q18 - Agricultural Policy ; Food Policy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 125806 |
Depositing User: | Souryabrata Mohapatra |
Date Deposited: | 27 Aug 2025 08:57 |
Last Modified: | 27 Aug 2025 08:57 |
References: | Ahmed, N., Xinagyu, G., Alnafissa, M., Ali, A., and Ullah, H. (2025). Linear and non-linear impact of key agricultural components on greenhouse gas emissions. Scientific Reports, 15(1): 5314. https://doi.org/10.1038/s41598-025-88159-1 Ali, S., Ying, L., Shah, T., Tariq, A., Ali Chandio, A., and Ali, I. (2019). Analysis of the Nexus of CO2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach. Energies, 12(23): 4590. https://doi.org/10.3390/en12234590 Alvi, S., Roson, R., Sartori, M., and Jamil, F. (2021). An integrated assessment model for food security under climate change for South Asia. Heliyon, 7(4): e06707 https://doi.org/10.1016/j.heliyon.2021.e06707 Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2): 95–96. https://doi.org/10.1007/s42398-019-00078-w Asogwa, J., Manasseh, C., Abada, F., Nwonye, G., Nwonye, N., Okanya, O., … Okoh, J. (2022). Effect of Climate Variability on Crop Production: Evidence from Selected Communities in Rivers State Nigeria. Journal of Xi’an Shiyou University, 18(3): 239–260. https://www.xisdxjxsu.asia/viewarticle.php?aid=781 Barik, S. (2023). Odisha produces 13.606 million tonnes of food grains, highest production so far for state. The Hindu. https://www.thehindu.com/news/national/other-states/odisha-produces-13606-million-tonnes-of-food-grains-highest-production-so-far-for-state/article66899856.ece Basantaray, A. K., Paltasingh, K. R., and Birthal, P. S. (2022). Crop Diversification, Agricultural Transition and Farm Income Growth: Evidence from Eastern India. Italian Review of Agricultural Economics (REA), 77(3): 55–65. https://doi.org/10.36253/rea-13796 Belcaid, K., and El Ghini, A. (2020). Measuring the Weather Variability Effects on the Agricultural Sector in Morocco. In J. Xu, S. E. Ahmed, F. L. Cooke, and G. Duca (Eds.), Proceedings of the Thirteenth International Conference on Management Science and Engineering Management (pp. 70–84). Cham. Springer International Publishing. https://doi.org/10.1007/978-3-030-21248-3_6 Belford, C., Huang, D., Ahmed, Y. N., Ceesay, E., and Sanyang, L. (2022). An economic assessment of the impact of climate change on the Gambia’s agriculture sector: A CGE approach. International Journal of Climate Change Strategies and Management, 15(3): 322–352. https://doi.org/10.1108/IJCCSM-01-2022-0003 Birthal, P. S., and Hazrana, J. (2019). Crop diversification and resilience of agriculture to climatic shocks: Evidence from India. Agricultural Systems, 173: 345–354. https://doi.org/10.1016/j.agsy.2019.03.005 Birthal, P. S., Hazrana, J., Negi, D. S., and Bhan, S. C. (2021). Climate change and land-use in Indian agriculture. Land Use Policy, 109: 105652. https://doi.org/10.1016/j.landusepol.2021.105652 Chandio, A. A., Jiang, Y., Rehman, A., and Rauf, A. (2020). Short and long-run impacts of climate change on agriculture: An empirical evidence from China. International Journal of Climate Change Strategies and Management, 12(2): 201–221. https://doi.org/10.1108/IJCCSM-05-2019-0026 Crofils, C., Gallic, E., and Vermandel, G. (2025). The dynamic effects of weather shocks on agricultural production. Journal of Environmental Economics and Management, 130: 103078. https://doi.org/10.1016/j.jeem.2024.103078 Deressa, T. T. (2007). Measuring the economic impact of climate change on Ethiopian agriculture: Ricardian approach (Working Paper Series No. 4342). Washington D.C. The World Bank. http://documents.worldbank.org/curated/en/143291468035673156/Measuring-the-economic-impact-of-climate-change-on-Ethiopian-agriculture-Ricardian-approach Di Falco, S., and Veronesi, M. (2014). Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia. Environmental and Resource Economics, 57(4): 553–577. https://doi.org/10.1007/s10640-013-9696-1 Dudu, H., and Çakmak, E. H. (2018). Climate change and agriculture: An integrated approach to evaluate economy-wide effects for Turkey. Climate and Development, 10(3): 275–288. https://doi.org/10.1080/17565529.2017.1372259 Duku, C., Zwart, S. J., and Hein, L. (2018). Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLOS ONE, 13(3): e0192642. https://doi.org/10.1371/journal.pone.0192642 GOO. (2022). Odisha Economic Survey 2021-22. Cuttack. Directorate of Economics and Statistics Planning and Convergence Department, Government of Odisha. https://finance.odisha.gov.in/sites/default/files/2022-03/Economic%20Survey%20-%20Highlights.pdf Gouraram, P., Goyari, P., and Paltasingh, K. R. (2022). Rice ecosystem heterogeneity and determinants of climate risk adaptation in Indian agriculture: Farm-level evidence. Journal of Agribusiness in Developing and Emerging Economies, 14(2): 146–160. https://doi.org/10.1108/JADEE-03-2022-0044 Guntukula, R., and Goyari, P. (2020). Climate Change Effects on the Crop Yield and Its Variability in Telangana, India. Studies in Microeconomics, 8(1): 119–148. https://doi.org/10.1177/2321022220923197 Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M., … EL Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.925548 Hashida, Y., and Lewis, D. J. (2022). Estimating welfare impacts of climate change using a discrete-choice model of land management: An application to western U.S. forestry. Resource and Energy Economics, 68: 101295. https://doi.org/10.1016/j.reseneeco.2022.101295 Hoda, A., Gulati, A., Wardhan, H., and Rajkhowa, P. (2021). Drivers of Agricultural Growth in Odisha. In A. Gulati, R. Roy, and S. Saini (Eds.), Revitalizing Indian Agriculture and Boosting Farmer Incomes (pp. 247–278). Singapore. Springer Nature. https://doi.org/10.1007/978-981-15-9335-2_9 Im, K. S., Pesaran, M. H., and Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1): 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7 IPCC. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Geneva. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar4/wg2/ IPCC. (2014). Point of Departure. In Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 1: Global and Sectoral Aspects (Vol. 1, pp. 169–194). Cambridge. Cambridge University Press. https://doi.org/10.1017/CBO9781107415379.006 Kozicka, M., Tacconi, F., Horna, D., and Gotor, E. (2018). Forecasting cocoa yields for 2050 (p. 49). Rome. Bioversity International. https://hdl.handle.net/10568/93236 Kyaw, Y., Nguyen, T. P. L., Winijkul, E., Xue, W., and Virdis, S. G. P. (2023). The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand. Climate, 11(10): 204. https://doi.org/10.3390/cli11100204 Lemi, T., and Hailu, F. (2019). Effects of Climate Change Variability on Agricultural Productivity. International Journal of Environmental Sciences & Natural Resources, 17(1): 1–7. https://doi.org/10.19080/IJESNR.2019.17.555953 Levin, A., Lin, C.-F., and James Chu, C.-S. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1): 1–24. https://doi.org/10.1016/S0304-4076(01)00098-7 Lin, S.-S., Zhang, N., Xu, Y.-S., and Hino, T. (2020). Lesson Learned from Catastrophic Floods in Western Japan in 2018: Sustainable Perspective Analysis. Water, 12(9): 2489. https://doi.org/10.3390/w12092489 Liu, D., Mishra, A. K., and Ray, D. K. (2020). Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Science of The Total Environment, 748: 141431. https://doi.org/10.1016/j.scitotenv.2020.141431 Mantziaris, S., Rozakis, S., Karanikolas, P., Petsakos, A., and Tsiboukas, K. (2024). Simulating farm structural change dynamics in Thessaly (Greece) using a recursive programming model. Bio-Based and Applied Economics, 13(4): 353–386. https://doi.org/10.36253/bae-14790 Martin-Moreno, J. M., Garcia-Lopez, E., Guerrero-Fernandez, M., Alfonso-Sanchez, J. L., and Barach, P. (2025). Devastating “DANA” Floods in Valencia: Insights on Resilience, Challenges, and Strategies Addressing Future Disasters. Public Health Reviews, 46: 1608297. https://doi.org/10.3389/phrs.2025.1608297 Mendelsohn, R., Nordhaus, W. D., and Shaw, D. (1994). The Impact of Global Warming on Agriculture: A Ricardian Analysis. The American Economic Review, 84(4): 753–771. https://www.jstor.org/stable/2118029 Mohapatra, S., Paltasingh, K. R., Peddi, D., Sahoo, D., Sahoo, A. K., and Mohanty, P. (2025). Evaluating Seasonal Weather Risks on Cereal Yield Distributions in Southern India. Journal of Quantitative Economics. https://doi.org/10.1007/s40953-025-00448-8 Mohapatra, S., Sharp, B., Sahoo, A. K., and Sahoo, D. (2023). Seasonal Weather Sensitivity of Staple Crop Rice in South India. In P. S. Duque de Brito, J. R. da Costa Sanches Galvão, P. Monteiro, R. Panizio, L. Calado, A. C. Assis, … V. S. Santos Ribeiro (Eds.), Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022) (pp. 130–146). Cham. Springer International Publishing. https://doi.org/10.1007/978-3-031-26849-6_15 Moniruzzaman, S. (2019). Crop diversification as climate change adaptation: How do bangladeshi farmers perform? Climate Change Economics, 10(02): 1950007. https://doi.org/10.1142/S2010007819500076 Moulkar, R., and Peddi, D. (2023). Climate sensitivity of major crops yield in Telangana state, India. Journal of the Asia Pacific Economy, 29(4): 2023–2040. https://doi.org/10.1080/13547860.2023.2230007 Nugroho, A. D., Prasada, I. Y., and Lakner, Z. (2023). Comparing the effect of climate change on agricultural competitiveness in developing and developed countries. Journal of Cleaner Production, 406: 137139. https://doi.org/10.1016/j.jclepro.2023.137139 Opoku Mensah, S., Akanpabadai, T. A., Diko, S. K., Okyere, S. A., and Benamba, C. (2023). Prioritisation of climate change adaptation strategies by smallholder farmers in semi-arid savannah agro-ecological zones: Insights from the Talensi District, Ghana. Journal of Social and Economic Development, 25(1): 232–258. https://doi.org/10.1007/s40847-022-00208-x Paltasingh, K. R., and Goyari, P. (2015). Climatic Risks and Household Vulnerability Assessment: A Case of Paddy Growers in Odisha. Agricultural Economics Research Review, 28: 199–210. https://doi.org/10.5958/0974-0279.2015.00035.X Pattanayak, A., and Kumar, K. S. K. (2021). Does weather sensitivity of rice yield vary across sub-regions of a country? Evidence from Eastern and Southern India. Journal of the Asia Pacific Economy, 26(1): 51–72. https://doi.org/10.1080/13547860.2020.1717300 Pattanayak, A., Kumar, K. S. K., and Anneboina, L. R. (2021). Distributional impacts of climate change on agricultural total factor productivity in India. Journal of the Asia Pacific Economy, 26(2): 381–401. https://doi.org/10.1080/13547860.2021.1917094 Pesaran, H. H., and Shin, Y. (1998). Generalised impulse response analysis in linear multivariate models. Economics Letters, 58(1): 17–29. https://doi.org/10.1016/S0165-1765(97)00214-0 Pesaran, M. H., Shin, Y., and Smith, R. P. (1999). Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. Journal of the American Statistical Association, 94(446): 621–634. https://doi.org/10.2307/2670182 Prasada, D. V. P. (2020). Climate resilience and varietal choice: A path analytic model for rice in Bangladesh. Journal of Agribusiness in Developing and Emerging Economies, 12(1): 40–55. https://doi.org/10.1108/JADEE-09-2019-0135 Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., … Mahmood, A. (2023). An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus, 9: 100179. https://doi.org/10.1016/j.nexus.2023.100179 Raihan, A., and Tuspekova, A. (2022). Nexus between economic growth, energy use, agricultural productivity, and carbon dioxide emissions: New evidence from Nepal. Energy Nexus, 7: 100113. https://doi.org/10.1016/j.nexus.2022.100113 Ricardo, D. (1817). On the Principles of Political Economy, and Taxation. Cambridge. Cambridge University Press. https://doi.org/10.1017/CBO9781107589421 Rout, H. K. (2021, November 27). 30 per cent of Odisha population is poor: Niti Aayog report. The New Indian Express. https://www.newindianexpress.com/states/odisha/2021/Nov/27/30-per-centof-odisha-population-is-poor-niti-aayog-report-2388739.html Senapati, A. K. (2022). Weather effects and their long-term impact on agricultural yields in Odisha, East India: Agricultural policy implications using NARDL approach. Journal of Public Affairs, 22(3): e2498. https://doi.org/10.1002/pa.2498 Seven, U., and Tumen, S. (2020). Agricultural Credits and Agricultural Productivity: Cross-Country Evidence (IZA Discussion Paper No. 12930). Bonn. Institute for the Study of Labor. http://dx.doi.org/10.2139/ssrn.3534478 Siotra, V., and Kumari, S. (2024). Assessing spatiotemporal patterns of crop combination and crop concentration in Jammu Division of Jammu and Kashmir. Journal of Social and Economic Development, 27: 139-166. https://doi.org/10.1007/s40847-024-00337-5 Sjulgård, H., Keller, T., Garland, G., and Colombi, T. (2023). Relationships between weather and yield anomalies vary with crop type and latitude in Sweden. Agricultural Systems, 211: 103757. https://doi.org/10.1016/j.agsy.2023.103757 Srinivasa Rao, Ch., Gopinath, K. A., Prasad, J. V. N. S., Prasannakumar, and Singh, A. K. (2016). Chapter Four - Climate Resilient Villages for Sustainable Food Security in Tropical India: Concept, Process, Technologies, Institutions, and Impacts. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 140, pp. 101–214). Academic Press. https://doi.org/10.1016/bs.agron.2016.06.003 Taraz, V. (2018). Can farmers adapt to higher temperatures? Evidence from India. World Development, 112: 205–219. https://doi.org/10.1016/j.worlddev.2018.08.006 Tesfaye, W., and Tirivayi, N. (2020). Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda. World Development, 125: 104686. https://doi.org/10.1016/j.worlddev.2019.104686 Tripathi, A., and Mishra, A. K. (2017). Knowledge and passive adaptation to climate change: An example from Indian farmers. Climate Risk Management, 16: 195–207. https://doi.org/10.1016/j.crm.2016.11.002 Tuihedur Rahman, H. M., Hickey, G. M., Ford, J. D., and Egan, M. A. (2018). Climate change research in Bangladesh: Research gaps and implications for adaptation-related decision-making. Regional Environmental Change, 18(5): 1535–1553. https://doi.org/10.1007/s10113-017-1271-9 Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., … Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14(5): 054010. https://doi.org/10.1088/1748-9326/ab154b Xiang, T., Malik, T. H., Hou, J. W., and Ma, J. (2022). The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013. Agriculture, 12(12): 2123. https://doi.org/10.3390/agriculture12122123 Xie, B., Brewer, M. B., Hayes, B. K., McDonald, R. I., and Newell, B. R. (2019). Predicting climate change risk perception and willingness to act. Journal of Environmental Psychology, 65: 101331. https://doi.org/10.1016/j.jenvp.2019.101331 Yamamoto, H., and Naka, T. (2021). Quantitative Analysis of the Impact of Floods on Firms’ Financial Conditions (Working Paper No. 21-E-10). Bank of Japan. https://www.boj.or.jp/en/research/wps_rev/wps_2021/wp21e10.htm Yang, H., Cao, Y., Shi, Y., Wu, Y., Guo, W., Fu, H., and Li, Y. (2022). The Dynamic Impacts of Weather Changes on Vegetable Price Fluctuations in Shandong Province, China: An Analysis Based on VAR and TVP-VAR Models. Agronomy, 12(11): 2680. https://doi.org/10.3390/agronomy12112680 Yoshida, S., Kashima, S., Okazaki, Y., and Matsumoto, M. (2023). Effects of 2018 Japan floods on healthcare costs and service utilisation in Japan: A retrospective cohort study. BMC Public Health, 23(1): 1–10. https://doi.org/10.1186/s12889-023-15205-w Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A. (2018). Understanding and reproducing regional diversity of climate impacts on wheat yields: Current approaches, challenges and data driven limitations. Environmental Research Letters, 13(2): 021001. https://doi.org/10.1088/1748-9326/aaa00d |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/125806 |