Mynbaev, Kairat (2009): OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model: Extended Version.
Preview |
PDF
MPRA_paper_15153.pdf Download (237kB) | Preview |
Abstract
We find the asymptotic distribution of the OLS estimator of the parameters $% \beta$ and $\rho$ in the mixed spatial model with exogenous regressors $% Y_n=X_n\beta+\rho W_nY_n+V_n$. The exogenous regressors may be bounded or growing, like polynomial trends. The assumption about the spatial matrix $W_n $ is appropriate for the situation when each economic agent is influenced by many others. The error term is a short-memory linear process. The key finding is that in general the asymptotic distribution contains both linear and quadratic forms in standard normal variables and is not normal.
Item Type: | MPRA Paper |
---|---|
Commentary on: | Mynbaev, Kairat (2006): Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model. |
Original Title: | OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model: Extended Version |
Language: | English |
Keywords: | $L_p$-approximability; mixed spatial model; OLS asymptotics |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C31 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions ; Social Interaction Models C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics |
Item ID: | 15153 |
Depositing User: | Kairat Mynbaev |
Date Deposited: | 11 May 2009 01:47 |
Last Modified: | 28 Sep 2019 02:47 |
References: | \bibitem{PaelinckKlaassen} J. Paelinck, L. Klaassen, Spatial Econometrics, Saxon House, Farnborough, 1979. \bibitem{CliffOrd} A.D. Cliff, J.K. Ord, Spatial Autocorrelation, Pion Ltd., London, 1973. \bibitem{Ans88} L. Anselin, Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, The Netherlands, 1988. \bibitem{Cressie} N. Cressie, Statistics for Spatial Data, Wiley, New York, 1993. \bibitem{AnselinFlorax} L. Anselin, R. Florax, New Directions in Spatial Econometrics, Springer-Verlag, Berlin, 1995. \bibitem{Ord} J.K. Ord, Estimation Methods for Models of Spatial Interaction, J. Amer. Statist. Assoc., 70 (1975) 120--126. \bibitem{KP98} H.H. Kelejian, I.R. Prucha, A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, J. of Real Estate Finance and Econom., 17 (1998) 99--121. \bibitem{KP99} H.H. Kelejian, I.R. Prucha, A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model, Internat. Econom. Rev., 40 (1999) 509--533. \bibitem{SmirnovAnselin} O.L. Smirnov, L. Anselin, Fast Maximum Likelihood Estimation of Very Large Spatial Autoregressive Models: A Characteristic Polynomial Approach, Comput. Statist. Data Anal., 35 (2001) 301--319. \bibitem{Lee01} L.F. Lee, Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models I: Spatial Autoregressive Processes, Unpublished Manuscript, Ohio State University, 2001. \bibitem{Lee02} L.F. Lee, Consistency and Efficiency of Least Squares Estimation for Mixed Regressive, Spatial Autoregressive Models, Econometric Theory, 18 (2002) 252--277. \bibitem{Lee03} L.F. Lee, Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances, Econometric Rev., 22 (2003) 307--335. \bibitem{Lee04} L.F. Lee, Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models, Econometrica, 72 (2004) 1899--1925. \bibitem{MynbaevUllah} K.T. Mynbaev, A. Ullah, Asymptotic distribution of the OLS estimator for a purely autoregressive spatial model, J. Multivariate Analysis, 99 (2008) 245--277. \bibitem{Mynbaev01} K.T. Mynbaev, $L_{p}$-approximable Sequences of Vectors and Limit Distribution of Quadratic Forms of Random Variables, Adv. in Appl. Math., 26 (2001) 302--329. \bibitem{Mynbaev07} K.T. Mynbaev, Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model. (2006) Unpublished. http://mpra.ub.uni-muenchen.de/4411/ \bibitem{PotscherPrucha} B.M. P\"{o}tscher, I.R. Prucha, Basic Structure of the Asymptotic Theory in Dynamic Nonlinear Econometric Models, Part I: Consistency and approximation concepts, Econometric Rev., 10 (1991) 125-216. \bibitem{Tanaka} K. Tanaka, Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, Wiley, New York, 1996. \bibitem{GohbergKrein} I.C. Gohberg, M.G. Kre\u{\i}n, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Providence, Rhode Island, 1969. \bibitem{Anderson} T.W. Anderson, The Statistical Analysis of Time Series, Wiley, New York, 1971. \bibitem{Amemiya} T. Amemiya, Advanced Econometrics, Blackwell, Oxford, 1985. \bibitem{MynbaevCastelar} K.T. Mynbaev, I. Castelar, The Strengths and Weaknesses of $L_{2}$-approximable Regressors: Two Essays on Econometrics, V.1, Fortaleza, Express\~{a}o Gr\'{a}fica, 2001. \bibitem{Gantmacher} F.R. Gantmacher, The Theory of Matrices, V. 1, Providence, American Mathematical Society, Rhode Island, 1998. \bibitem{Mynbaev06} K.T. Mynbaev, Asymptotic Properties of OLS Estimates in Autoregressions with Bounded or Slowly Growing Deterministic Trends, Comm. Statist. Theory Methods, 35 (2006) 499--520. \bibitem{Case91} A.C. Case, Spatial Patterns in Household Demand, Econometrica, 59 (1991) 953--965. \bibitem{NabTan90} S. Nabeya, K. Tanaka, A General Approach to the Limiting Distribution for Estimators in Time Series Regression with Nonstable Autoregressive Errors, Econometrica, 58 (1990) 145--163. \bibitem{Billingsley} P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. \bibitem{Lutkepohl} H. L\"{u}tkepohl, Introduction to Multiple Time Series Analysis, Springer, New York, 1991. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/15153 |
Commentary/Response Threads
-
Mynbaev, Kairat
Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model. (deposited 15 Aug 2007)
- Mynbaev, Kairat OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model: Extended Version. (deposited 11 May 2009 01:47) [Currently Displayed]