Fry, J. M. (2009): Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion.
Preview |
PDF
MPRA_paper_16027.pdf Download (170kB) | Preview |
Abstract
We develop a rational expectations model of financial bubbles and study ways in which a generic risk-return interplay is incorporated into prices. We retain the interpretation of the leading Johansen-Ledoit-Sornette model, namely, that the price must rise prior to a crash in order to compensate a representative investor for the level of risk. This is accompanied, in our stochastic model, by an illusion of certainty as described by a decreasing volatility function. The basic model is then extended to incorporate multivariate bubbles and contagion, non-Gaussian models and models based on stochastic volatility. Only in a stochastic volatility model where the mean of the log-returns is fixed does volatility increase prior to a crash.
Item Type: | MPRA Paper |
---|---|
Original Title: | Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion |
Language: | English |
Keywords: | financial crashes; super-exponential growth; illusion of certainty; contagion |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C00 - General E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E30 - General G - Financial Economics > G1 - General Financial Markets > G10 - General |
Item ID: | 16027 |
Depositing User: | John Fry |
Date Deposited: | 05 Jul 2009 18:54 |
Last Modified: | 03 Oct 2019 07:55 |
References: | Sornette, D. and Malevergne, Y. (2001) From rational bubbles to crashes Physica A 299 40-59. Sornette, D. and Johansen, A., (1997) Large financial crashes Physica A, 245, 411-422. Johansen, A., Ledoit, O. and Sornette, D. (2000) Crashes as critical points {Int. J. Theor. and Appl. Finan., 3, 219-255. Johansen, A. (2004) Origins of crashes in 3 US stock markets: shocks and bubbles Physica A. 338 135-142. Laloux, L., Potters, M., Cont, R., Aguilar, J.-P and Bouchaud, J.-P. (1999) Are financial crashes predictable? Europhys Lett. 45 1-5. Johansen, A. (2002) Comment on ``Are financial crashes predictable?" Europhys Lett. 60 809-810. Feigenbaum, J. A. and Freund, P. G. O. (1996) Discrete scale invariance in stock markets before crashes Int. J. Mod. Phys. B 10 346-360. Feigenbaum, J. A. (2001a) A statistical analysis of log-periodic precursors to financial crashes Quant. Finan. 1 346-360. Feigenbaum, J. (2001b) More on a statistical analysis of log-periodic precursors to financial crashes Quant. Finan. 1 527-532. Chang, G., and Feigenbaum, J. (2006) A Bayesian analysis of log-periodic precursors to financial crashes Quant. Finan. 6 15-36. Chang, G., and Feigenbaum, J. (2008) Detecting log-periodicity in a regime-switching model of stock returns Quant. Finan. 8 723-738. Sornette, D. (1998) Discrete scale invariance and complex dimensions Phys. Reps 297 239-270. Zhou, W-X. and Sornette, D. (2006) Fundamental factors versus herding in the 2002-2005 US stock market and prediction Physica A 360 459-482. Cont, R. and Tankov, P. Financial modelling with jump processes. Chapman and Hall/CRC, Boca Raton London Hiedelberg Washington DC (2004). Sornette, D. and Andersen, J-V. (2002) A nonlinear super-exponential rational model of speculative financial bubbles. Int. J. Mod. Phys. C 17 171-188. Andersen, J-V., and Sornette, D. (2004) Fearless versus fearful speculative financial bubbles. Physica A, 337 565-585. Zhou, W-X. and Sornette, D. (2003) 2000–-2003 real estate bubble in the UK but not in the USA Physica A 329 249-262. Zhou, W-X. and Sornette, D. (2004) Probability of crashes and rallies. Preprint. Fry, J. M. Statistical modelling of financial crashes PhD thesis, Department of Probability and Statistics, University of Sheffield. (2008) Yeomans, J. M. (1992) Statistical mechanics of phase transitions, Oxford University Press. Cox, D. R. and Oakes, D. (1984) Analysis of survival data. Chapman and Hall/CRC, Boca Raton London New York Washington, D. C. Self, S., G. and Liang, K-Y. (1987) Asymptotic properties of maximum likelihood estimates and likelihood ratio tests under non-standard conditions Journal of the American Statistical Association 82 605-610. Campbell, J. Y., Lo., A., and MacKinlay, J. A. C. (1997) The econometrics of financial markets, Princeton University Press, Princeton. Forbes, K. J. and Rigobon, R. (2002) No contagion, only interdependence: Measuring stock market co-movements, Journal of Finance 57 2223-2261 Malevergne, Y. and Sornette, D. (2005) Extreme financial risks, Springer, Berlin, Hiedelberg, New York. Bishop, C. M. (2006) Pattern recognition and machine learning. Springer, Singapore. Barndorff-Nielsen, O. E. (1998) Processes of normal inverse Gaussian type, Finance and Stochastics 2 41-68. Barndorff-Nielsen, O. E. (1998) Normal inverse Gaussian distributions and stochastic volatility modelling Scandinavian Journal of Statistics 24 1-13. McNeil, A. J., Frey, R., and Embrechts, P. (2005) Quantitative risk management, Princeton University Press. Barndorff-Nielsen, O. E. and Prause, K. (2001) Apparent scaling Finance and Stochastics 5, 103-113. Kim, S., Shephard, N. and Chib, S. (1998) Stochastic volatility: likelihood inference and comparison with ARCH models Rev. Econ. Stud. 65 361-393. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/16027 |