Islam, Tanweer ul (2008): Normality Testing- A New Direction.
Preview |
PDF
MPRA_paper_16452.pdf Download (357kB) | Preview |
Abstract
Abstract
This paper is concerned with the evaluation of the performance of the normality tests to ensure the validity of the t-statistics used for assessing significance of regressors in a regression model. For this purpose, we have explored 40 distributions to find the most damaging distribution on the t-statistic. Power comparisons are conducted to find the best performing test against these distributions. It is found that Anderson-Darling statistic is the best option among the five normality tests, Jarque-Bera, Shapiro-Francia, D’Agostino & Pearson, Anderson-Darling & Lilliefors.
Item Type: | MPRA Paper |
---|---|
Original Title: | Normality Testing- A New Direction |
Language: | English |
Keywords: | Normality test, power of the test, t-statistic |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics |
Item ID: | 16452 |
Depositing User: | Dr Tanweer Islam |
Date Deposited: | 28 Jul 2009 00:28 |
Last Modified: | 26 Sep 2019 13:51 |
References: | References Bartolucci, F., & Scaccia, L. (2005). The use of mixtures for dealing with non-normal regression errors. Computational Statistics & Data Analysis , 48, 821-834. Bonett, D. G., & Seier, E. (2002). A test of normality with high uniform power. Computational Statistics & Data Analysis , 40, 435 – 445. Brys, G., Hubert, M., & Struyf, A. (2004). A Robustification of the Jarque-Bera test of Normality. Physica-Verlag / Springer . Cho, D. W., & Im, K. S. (2002). A Test of Normality Using Geary’s Skewness and Kurtosis Statistics. Working Papers, College of Business & Administration, University of Central Florida. D’Agostino, R. B., & Pearson, E.S. (1973). Tests for departure from normality. Empirical results for the distributions of b2 and √b1. Biometrika , 60, 613-622. Dufour, J.-M. F. (1998). Simulation-based finite sample normality tests in linear regressions. Economic Journal , 1, 154-173. Geary, R.C. (1947). Testing for normality. Biometrika, 34, 209-242. Gel, Y. R., Miao, W., & Gastwirth, J. L. (2007). Robust direct tests of normality against heavy-tailed alternatives. Computational Statistics & Data Analysis , 51, 2734-2746. Hogg, R.V. (1972). More lights on the kurtosis and related statistics. Journal of the American Statistical Association, 67, 422-424. Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review , 55 (2), 163-172. Onder, A. O., & Zaman, A. (2003). A test for normality based on robust regression residuals. In: Dutter et. al (Eds.), Development in Robust Statistics. Physica-Verlag, Heidelberg , 296-306. Pearson, E. S., D’Agostino, R. B., & Bowman, K. O. (1977). Tests for Departure from Normality: Comparison of Powers. Biometrika , 64 (2), 231-246. Seier, E. (2002). Comparison of Tests for Univariate Normality. Working Papar, East Tennessee State University, USA , 1-17. Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A Comparative Study of Various Tests of Normality. Journal of American Statist. Assoc. , 63, 1343-72. Thadewald & Büning. (2007). Jarque-Bera Test and its Competitors for Testing Normality – A Power Comparison. Journal of Applied Statistics, 34 (1), 87-105. Urzua, C., 1996. On the correct use of onimbus tests for normality. Economics Letters 53, 247-251. Yanagihara, H. (2003). Asymptotic expansion of the null distribution of test statistic for linear hypothesis in non-normal linear models. Journal of Multivariate Analysis , 84, 222-246. Yazici, B., & Yolacan, S. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation , 77 (2), 175-183. Zaman, A., & Onder, O. (2005). Robust tests for normality of errors in regression models. Economics Letters , 86, 63-68. Zaman, A., Rousseuw, P. J., & Orhan, M. (2001). Econometric applications of high-breakdown robust regression techniques. Economics Letters , 71, 1-8. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/16452 |