Logo
Munich Personal RePEc Archive

Commutative Prospect Theory and Stopped Behavioral Processes for Fair Gambles

Cadogan, Godfrey (2010): Commutative Prospect Theory and Stopped Behavioral Processes for Fair Gambles.

Warning
There is a more recent version of this item available.
[thumbnail of MPRA_paper_22351.pdf]
Preview
PDF
MPRA_paper_22351.pdf

Download (227kB) | Preview

Abstract

We augment Tversky and Khaneman (1992) (“TK92”) Cumulative Prospect Theory (“CPT”) function space with a sample space for “states of nature”, and depict a commutative map of behavior on the augmented space. In particular, we use a homotopy lifting property to mimic behavioral stochastic processes arising from deformation of stochastic choice into outcome. A psychological distance metric (in the class of Dudley-Talagrand inequalities) for stochastic learning, was used to characterize stopping times for behavioral processes. In which case, for a class of nonseparable space-time probability density functions, we find that behavioral processes are uniformly stopped before the goal of fair gamble is attained. Further, we find that when faced with a fair gamble, agents exhibit submartingale [supermartingale] behavior, subjectively, under CPT probability weighting scheme. We show that even when agents’ have classic von Neuman-Morgenstern preferences over probability distribution, and know that the gamble is a martingale, they exhibit probability weighting to compensate for probability leakage arising from the their stopped behavioral process.

Available Versions of this Item

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.