Tsyplakov, Alexander (2010): Revealing the arcane: an introduction to the art of stochastic volatility models.
Preview |
PDF
MPRA_paper_25511.pdf Download (730kB) | Preview |
Abstract
This essay is aimed to provide a straightforward and sufficiently accessible demonstration of some known procedures for stochastic volatility model. It reviews the important related concepts, gives informal derivations of the methods and can be useful as a cookbook for a novice. The exposition is confined to classical (non-Bayesian) framework and discrete-time formulations.
Item Type: | MPRA Paper |
---|---|
Original Title: | Revealing the arcane: an introduction to the art of stochastic volatility models |
Language: | English |
Keywords: | stochastic volatility |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 25511 |
Depositing User: | Alexander Tsyplakov |
Date Deposited: | 28 Sep 2010 20:13 |
Last Modified: | 30 Sep 2019 18:36 |
References: | Andersen, T. G. (1994). Stochastic Autoregressive Volatility: A Framework for Volatility Modeling. Mathematical Finance 4, 75–102. Andersen, T. G., H.-J. Chung & B. E. Sørensen (1999). Efficient Method of Moments Estimation of a Stochastic Volatility Model: A Monte Carlo Study. Journal of Econometrics 91, 61–87. Andersen, T. G. & B. E. Sørensen (1996). GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study. Journal of Business and Economic Statistics 14, 328–352. Andrews, D. W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation. Econometrica 59, 817–858. Asai, M. & M. McAleer (2005). Dynamic Asymmetric Leverage in Stochastic Volatility Models. Econometric Reviews 24, 317–332. Asai, M., M. McAleer & J. Yu (2006). Multivariate Stochastic Volatility: A Review. Econometric Reviews 25, 145–175. Bauwens, L. & D. Veredas (2004). The Stochastic Conditional Duration Model: A Latent Variable Model for the Analysis of Financial Durations. Journal of Econometrics 119, 381–412. Bollerslev, T. (1987). A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. Review of Economics and Statistics 69, 542–547. Bollerslev, T., R. F. Engle & D. B. Nelson (1994). ARCH Models. In R. F. Engle & D. McFadden, eds., Handbook of Econometrics, Elsevier, vol. IV. Breidt, F. J. & A. L. Carriquiry (1996). Improved Quasi-Maximum Likelihood Estimation for Stochastic Volatility Models. In J. C. Lee, W. O. Johnson & A. Zellner, eds., Modelling and Prediction: Honoring Seymour Geisser. Springer, 228–247. Breidt, F. J., N. Crato & P. de Lima (1998). The Detection and Estimation of Long Memory in Stochastic Volatility. Journal of Econometrics 83, 325–348. Brockwell, A. E. (2007). Likelihood-based Analysis of a Class of Generalized Long-Memory Time Series Models. Journal of Time Series Analysis 28, 386–407. Broto, C. & E. Ruiz (2004). Estimation Methods for Stochastic Volatility Models: A Survey. Journal of Economic Surveys 18, 613–649. Calzolari, G., G. Fiorentini & E. Sentana (2004). Constrained Indirect Estimation. Review of Economic Studies 71, 945–973. Carnero, M. A., D. Peña & E. Ruiz (2004). Persistence and Kurtosis in GARCH and Stochastic Volatility Models. Journal of Financial Econometrics 2, 319–342. Chernov, M., A. Gallant, E. Ghysels & G. Tauchen (1999). A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation. Working Paper 99s-48, CIRANO. Chib, S. & E. Greenberg (1996). Markov Chain Monte Carlo Simulation Methods in Econometrics. Econometric Theory 12, 409–431. Chib, S., F. Nardari & N. Shephard (2002). Markov Chain Monte Carlo Methods for Stochastic Volatility Models. Journal of Econometrics 108, 281–316. Chib, S., Y. Omori & M. Asai (2009). Multivariate Stochastic Volatility. In T. G. Andersen, R. A. Davis, J. Kreiß& T. Mikosch, eds., Handbook of Financial Time Series, Springer, 365–400. Commandeur, J. J. F. & S. J. Koopman (2007). An Introduction to State Space Time Series Analysis. Oxford University Press. Creal, D. D. (2009). A Survey of Sequential Monte Carlo Methods for Economics and Finance. Econometric Reviews, forthcoming. Danielsson, J. (1994). Stochastic Volatility in Asset Prices: Estimation with Simulated Maximum Likelihood. Journal of Econometrics 64, 375–400. Danielsson, J. (1998). Multivariate Stochastic Volatility Models: Estimation and a Comparison with VGARCH Models. Journal of Empirical Finance 5, 155–173. Danielsson, J. & J. F. Richard (1993). Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models. Journal of Applied Econometrics 8, S153–S173. (Supplement: Special Issue on Econometric Inference Using Simulation Techniques). Davidson, J. (2004). Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model. Journal of Business & Economic Statistics 22, 16–29. Davis, R. A. & G. Rodriguez-Yam (2005). Estimation for State-Space Models Based on a Likelihood Approximation. Statistica Sinica 15, 381–406. Dhaene, G. & O. Vergote (2003). Asymptotic Results for GMM Estimators of Stochastic Volatility Models. Center for Economic Studies Discussions Paper Series 03.06, K. U. Leuven. Diebold, F. X., T. A. Gunther & A. S. Tay (1998). Evaluating Density Forecasts with Applications to Financial Risk Management. International Economic Review 39, 863–883. Doornik, J. A. (2009). Ox 6 — An Object-Oriented Matrix Programming Language. Timberlake Consultants Ltd. Duffie, J. & K. Singleton (1993). Simulated Moments Estimation of Markov Models of Asset Prices. Econometrica 61, 929–952. Dufour, J.-M. & P. Valéry (2006). On a Simple Two-Stage Closed-Form Estimator for a Stochastic Volatility in a General Linear Regression. In D. Terrell & T. B. Fomby, eds., Econometric Analysis of Financial and Economic Time Series, Elsevier JAI, vol. 20, Part A of Advances in Econometrics, 259–288. Durbin, J. & S. J. Koopman (1997). Monte Carlo Maximum Likelihood Estimation of Non-Gaussian State Space Models. Biometrika 84, 669–684. Durbin, J. & S. J. Koopman (2000). Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives. Journal Of The Royal Statistical Society Series B 62, 3–56. Durbin, J. & S. J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford University Press. Durham, G. B. (2006). Monte Carlo Methods for Estimating, Smoothing, and Filtering One- and Two-Factor Stochastic Volatility Models. Journal of Econometrics 133, 273–305. Engle, R. F., D. M. Lilien & R. P. Robins (1987). Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica 55, 391–407. Eraker, B., M. Johannes & N. Polson (2003). The Impact of Jumps in Volatility and Returns. The Journal of Finance 58, 1269–1300. Evans, M. & T. Swartz (1995). Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems. Statistical Science 10, 254–272. Gallant, A. & G. Tauchen (1996). Which Moments to Match? Econometric Theory 12, 657–681. Gallant, A. R., D. Hsieh & G. Tauchen (1997). Estimation of Stochastic Volatility Models with Diagnostics. Journal of Econometrics 81, 159–192. Gentle, J. H. (2003). Random Number Generation and Monte Carlo Methods. Springer, 2nd edn.. Ghysels, E., A. Harvey & E. Renault (1996). Stochastic Volatility. In G. Maddala & C. Rao, eds., Handbook of Statistics: Statistical Methods in Finance, Vol. 14, North-Holland. Gneiting, T., F. Balabdaoui & A. E. Raftery (2007). Probabilistic Forecasts, Calibration and Sharpness. Journal of the Royal Statistical Society: Series B 69, 243–268. Gourieroux, C. & A. Monfort (1997). Simulation-Based Econometric Methods. Oxford University Press. Gourieroux, C., A. Monfort & E. Renault (1993). Indirect Inference. Journal of Applied Econometrics 8, S85–S118. Supplement: Special Issue on Econometric Inference Using Simulation Techniques. Hall, A. R. (2005). Generalized method of moments. Oxford University Press. Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 50, 1029–1054. Harvey, A., E. Ruiz & N. Shephard (1994). Multivariate Stochastic Variance Models. Review of Economic Studies 61, 247–264. Harvey, A. C. (2007). Long Memory in Stochastic Volatility. In J. Knight & S.Satchell, eds., Forecasting Volatility in the Financial Markets, Oxford: Butterworth-Heinemann, 351–363. 3rd edn.. Harvey, A. C. & T. Proietti, eds. (2005). Readings in Unobserved Components Models. Advanced Texts in Econometrics. Oxford University Press. Harvey, A. C. & N. Shephard (1993). Estimation and Testing of Stochastic Variance Models. STICERD Econometrics Discussion Paper 93-268, London School of Economics. Harvey, A. C. & N. Shephard (1996). Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns. Journal of Business & Economic Statistics 14, 429–434. Hautsch, N. & Y. Ou (2008). Stochastic Volatility Estimation Using Markov Chain Simulation. In W. K. Härdle, N. Hautsch & L. Overbeck, eds., Applied Quantitative Finance, Berlin, Heidelberg: Springer, chap. 12, 249–274. 2nd edn.. Hull, J. & A. White (1987). The Pricing of Options on Assets with Stochastic Volatilities. Journal of Finance 42, 281–300. Hurvich, C. M. & P. Soulier (2009). Handbook of Financial Time Series. In T. G. Andersen, R. A. Davis, J. Kreiß& T. Mikosch, eds., Stochastic Volatility Models with Long Memory, Springer, 345–354. Jacquier, E., N. G. Polson & P. E. Rossi (1994). Bayesian Analysis of Stochastic Volatility Models. Journal of Business & Economic Statistics 12, 69–87. Jacquier, E., N. G. Polson & P. E. Rossi (1999). Stochastic Volatility: Univariate and Multivariate Extensions. Working Paper 99s-26, CIRANO. Jacquier, E., N. G. Polson & P. E. Rossi (2004). Bayesian Analysis of Stochastic Volatility Models with Fat-Tails and Correlated Errors. Journal of Econometrics 122, 185–212. Jung, R. C., M. Kukuk & R. Liesenfeld (2006). Time Series of Count Data: Modeling, Estimation and Diagnostics. Computational Statistics & Data Analysis 51, 2350–2364. Jungbacker, B. & S. J. Koopman (2009). Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility. In T. G. Andersen, R. A. Davis, J. Kreiß& T. Mikosch, eds., Handbook of Financial Time Series, Springer. Kim, S., N. Shephard & S. Chib (1998). Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models. Review of Economic Studies 65, 361–393. Kirby, C. (2006). Linear Filtering for Asymmetric Stochastic Volatility Models. Economics Letters 92, 284–292. Koopman, S. J. & E. H. Uspensky (2002). The Stochastic Volatility in Mean Model: Empirical Evidence from International Stock Markets. Journal of Applied Econometrics 17, 667–689. Lee, K. M. & S. J. Koopman (2004). Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers. Studies in Nonlinear Dynamics & Econometrics 8, Article 5, 1–15. Liesenfeld, R. & R. C. Jung (2000). Stochastic Volatility Models: Conditional Normality versus Heavy-Tailed Distributions. Journal of Applied Econometrics 15, 137–160. Liesenfeld, R. & J.-F. Richard (2003). Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics. Journal of Empirical Finance 10, 505–531. Liesenfeld, R. & J.-F. Richard (2006). Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models. Econometric Reviews 25, 335–360. Melino, A. & S. M. Turnbull (1990). Pricing Foreign Currency Options with Stochastic Volatility. Journal of Econometrics 45, 239–265. Meyer, R., D. A. Fournier & A. Berg (2003). Stochastic Volatility: Bayesian Computation Using Automatic Differentiation and the Extended Kalman filter. Econometrics Journal 6, 408–420. Meyer, R. & J. Yu (2000). BUGS for a Bayesian Analysis of Stochastic Volatility Models. Econometrics Journal 3, 198–215. Monfardini, C. (1998). Estimating Stochastic Volatility Models Through Indirect Inference. Econometrics Journal 1, 113–128. Nelson, D. B. (1988). The Time Series Behavior of Stock Market Volatility and Returns. Ph. D. dissertation, Massachusetts Institute of Technology, Dept. of Economics, Cambridge, MA. Nocedal, J. & S. J. Wright (2006). Numerical Optimization. Springer-Verlag, 2nd ed. edn.. Omori, Y., S. Chib, N. Shephard & J. Nakajima (2007). Stochastic Volatility with Leverage: Fast and Efficient Likelihood Inference. Journal of Econometrics 140, 425–449. Renault, E. (2009). Moment-Based Estimation of Stochastic Volatility Models. In T. G. Andersen, R. A. Davis, J. Kreiß& T. Mikosch, eds., Handbook of Financial Time Series, Springer, 269–311. Richard, J.-F. & W. Zhang (2007). Efficient High-Dimensional Importance Sampling. Journal of Econometrics 141, 1385–1411. Rubinstein, R. Y. & D. P. Kroese (2008). Simulation and the Monte Carlo Method. Wiley- Interscience, 2nd ed. edn.. Ruiz, E. (1994). Quasi-Maximum Likelihood Estimation of Stochastic Volatility Models. Journal of Econometrics 63, 289–306. Sandmann, G. & S. J. Koopman (1998). Estimation of Stochastic Volatility Models via Monte Carlo Maximum Likelihood. Journal of Econometrics 87, 271–301. Scott, L. O. (1987). Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application. Journal of Financial and Quantitative Analysis 22, 419–438. Shephard, N. (1993). Fitting Non-Linear Time Series Models, with Applications to Stochastic Variance Models. Journal of Applied Econometrics 8, 135–152. Shephard, N. (1994). Local Scale Models: State Space Alternative to Integrated GARCH Processes. Journal of Econometrics 60, 181–202. Shephard, N., ed. (2005). Stochastic Volatility: Selected Readings. Advanced Texts in Econometrics. Oxford University Press. Shephard, N. & T. G. Andersen (2009). Stochastic Volatility: Origins and Overview. In T. G. Andersen, R. A. Davis, J.-P. Kreiß& T. Mikosch, eds., Handbook of Financial Time Series, Springer, 233–254. Shephard, N. & M. K. Pitt (1997). Likelihood Analysis of Non-Gaussian Measurement Time Series. Biometrika 84, 653–668. Shimada, J. & Y. Tsukuda (2005). Estimation of Stochastic Volatility Models: An Approximation to the Nonlinear State Space Representation. Communications in Statistics — Simulation and Computation 34, 429–450. Skaug, H. & J. Yu (2007). Automated Likelihood Based Inference for Stochastic Volatility Models. Working paper, Sim Kee Boon Institute for Financial Economics, Singapore Management University. Tanizaki, H. (2003). Nonlinear and Non-Gaussian State-Space Modeling with Monte Carlo Techniques: A Survey and Comparative Study. In D. N. Shanbhag & C. R. Rao, eds., Handbook of Statistics, Elsevier, vol. 21, chap. 22, 871–929. Taylor, S. J. (1982). Financial Returns Modelled by the Product of Two Stochastic Processes: A Study of Daily Sugar Prices, 1961–79. In O. D. Anderson, ed., Time Series Analysis: Theory and Practice 1, North-Holland. Taylor, S. J. (1986). Modelling Financial Time Series. Wiley. Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. Annals of Statistics 22, 1701–1728. White, H. L. (1984). Maximum Likelihood Estimation of Misspecified Dynamic Models. In T. K. Dijkstra, ed., Misspecification Analysis, New York: Springer, 1–19. Yu, J. (2005). On Leverage in a Stochastic Volatility Model. Journal of Econometrics 127, 165–178. Yu, J. & R. Meyer (2006). Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison. Econometric Reviews 25, 361–384. Zeger, S. L. (1988). A Regression Model for Time Series of Counts. Biometrika 75, 621–629. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/25511 |