Logo
Munich Personal RePEc Archive

Gaussian and non-Gaussian models for financial bubbles via econophysics

Fry, J. M. (2010): Gaussian and non-Gaussian models for financial bubbles via econophysics.

[thumbnail of MPRA_paper_27307.pdf]
Preview
PDF
MPRA_paper_27307.pdf

Download (124kB) | Preview

Abstract

We develop a rational expectations model of financial bubbles and study how the risk-return interplay is incorporated into prices. We retain the interpretation of the leading Johansen-Ledoit-Sornette model: namely, that the price must rise prior to a crash in order to compensate a representative investor for the level of risk. This is accompanied, in our stochastic model, by an illusion of certainty as described by a decreasing volatility function. As the volatility function decreases crashes can be seen to represent a phase transition from stochastic to deterministic behaviour in prices. Our approach is first illustrated by a benchmark Gaussian model - subsequently extended to a heavy-tailed model based on the Normal Inverse Gaussian distribution. Our model is illustrated by an empirical application to the London Stock Exchange. Results suggest that the aftermath of the Bank of England's process of quantitative easing has coincided with a bubble in the FTSE 100.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.