Ardia, David and Ospina, Juan and Giraldo, Giraldo (2010): Jump-Diffusion Calibration using Differential Evolution.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_27852.pdf Download (373kB) | Preview |
Abstract
The estimation of a jump-diffusion model via Differential Evolution is presented. Finding the maximum likelihood estimator for such processes is a tedious task due to the multimodality of the likelihood function. The performance of the Differential Evolution algorithm is compared to standard optimization techniques.
Item Type: | MPRA Paper |
---|---|
Original Title: | Jump-Diffusion Calibration using Differential Evolution |
Language: | English |
Keywords: | Jump-diffusion; maximum likelihood; optimization; Differential Evolution |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General |
Item ID: | 27852 |
Depositing User: | David Ardia |
Date Deposited: | 07 Jan 2011 08:40 |
Last Modified: | 26 Sep 2019 11:00 |
References: | Ardia, D., Boudt, K., Carl, P., Mullen, K., Peterson, B., 2010. Differential Evolution (DEoptim) for non-convex portfolio optimization. Ardia, D., Mullen, K., 2009. DEoptim: Differential Evolution Optimization in R. R package version 2.00-06. URL http://CRAN.R-project.org/package=DEoptim Ball, C. A., Torous, W. N., 1983. A simplified jump process for common stock returns. The Journal of Financial and Quantitative Analysis 18 (1), 53–65. Beckers, S., 1981. A note on estimating the parameters of the jump-diffusion model of stock returns. Journal of Financial and Quantitative Analysis 16, 127–140. Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. The Journal of Political Economy 81 (3), 637–654. Cont, R., Tankov, P., 2004. Financial Modelling with Jumps. Chapman & Hall / CRC Press, ISBN 1584884134. Honore, P., 1998. Pitfalls in estimating jump-diffusion models. Kiefer, N., 1978. Discrete parameter variation: Efficient estimation in diffusion process. Econometrica 46 (2), 427– 434. Merton, R. C., 1973. Theory of rational option pricing. The Bell Journal of Economics and Management Science 4 (1), 141–183. Mullen, K. M., Ardia, D., Gil, D. L., Windover, D., Cline, J., 2009. DEoptim: An R package for global optimization by Differential Evolution. Ospina Arango, J. D., 2009. Estimacion de un modelo de difusion con saltos con distribucion de error generalizada asimitrica usando algoritmos evolutivos. Price, K. V., Storn, R. M., Lampinen, J. A., 2006. Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag, Berlin, Germany, ISBN 3540209506. R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. URL http://www.R-project.org Storn, R., Price, K., 1997. Differential Evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11 (4), 341–359. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/27852 |
Available Versions of this Item
-
Jump-Diffusion Calibration using Differential Evolution. (deposited 29 Oct 2010 11:50)
- Jump-Diffusion Calibration using Differential Evolution. (deposited 07 Jan 2011 08:40) [Currently Displayed]