Espinosa Méndez, Christian (2005): Evidencia De Comportamiento Caótico En Indices Bursátiles Americanos. Forthcoming in: Trimestre Económico , Vol. 296, (31 September 2007)
Preview |
PDF
MPRA_paper_2794.pdf Download (659kB) | Preview |
Abstract
This article validates the chaotic behavior in the Argentinean, Brazilian, Canadian, Chilean, American, Peruvian and Mexican Stock Markets using the MERVAL, BOVESPA, S&P TSX COMPOSITE, IPSA, IGPA, S&P 500, DOW JONES INDUSTRIALS, NASDAQ, IGBVL and IPC Stock Indexes respectively. The results of different techniques and methods like: Graphic Analysis, Recurrence Analysis, Temporal Space Entropy, Hurst Coefficient, Lyapunov Exponential and Correlation Dimension support the hypothesis that the stock markets behave in a chaotic way and rejected the hypothesis of randomness. Our conclusion validates the use of prediction techniques in those stock markets. It’s remarkable the result of the Hurst Coefficient Technique, that in average was of 0,75 for the indexes of this study which would justify the use of ARFIMA models among others for the prediction of such series.
Item Type: | MPRA Paper |
---|---|
Institution: | Universidad Diego Portales |
Original Title: | Evidencia De Comportamiento Caótico En Indices Bursátiles Americanos |
English Title: | Evidence Of Chaotic Behavior In American Stock Markets |
Language: | Spanish |
Keywords: | Chaos Theory; Recurrence Analysis; Temporal Space Entropy; Hurst Coefficient; Lyapunov Exponential; Correlation Dimension; BDS Test |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G10 - General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General G - Financial Economics > G1 - General Financial Markets > G14 - Information and Market Efficiency ; Event Studies ; Insider Trading G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General |
Item ID: | 2794 |
Depositing User: | Christian Espinosa Méndez |
Date Deposited: | 19 Apr 2007 |
Last Modified: | 29 Sep 2019 10:19 |
References: | Abarbanel, H.D.I., Brown, R. y Kennel M.B.: Local Lyapunov exponents computed from observed data. Journal of Nonlinear Science. Vol. 1, p. 175-199. (1991). Bai Lin H.: Chaos II. World Scientific Publishing Company, Singapore. (1990). Bollerslev, T.: Generalized Autorregresive Conditional Heterocedasticity. Journal of Econometrics. Vol. 31, p. 307-327. (1986). Box, G. E. P. y Jenkins, G. M.: Time Series Analysis: Forecasting and Control. Holden Day Inc., San Francisco. (1970). Brock, W. A. y Dechert, D. W.: Non-linear dynamical systems: instability and chaos in economics. W. Hildenbrand and H. Sonnenschein, eds., Handbook of Mathematical Economics IV. Amsterdam: North-Holland, p. 2209-2235. (1991). Brock, W., Dechert, W., y Scheinkman, J.: A Test for Independence Based on the Correlation Dimension. University of Wisconsin at Madison, Department of Economics, Working Paper. (1987). Brock, W.A., Dechert, W.D., Scheinkman, J.A. y LeBaron, B.: A test for Independence Based on the Correlation Dimension. Econometric Reviews. Vol.15, Nº3, p. 197-235. (1996). Casdagli M.: Nonlinear prediction of chaotic time series. Physica D 35. Vol. 35, p.335-356.(1989). Conrad J. y Kaul G.: Time-variation in expected returns. Journal of Business. Vol. 61, p. 409-425. (1988). Conrad J. y Kaul G.: Mean reversion in short-horizon expected returns. Review of Financial Studies 2, p. 225-240. (1989). Dickey, D.A. y Fuller, W.A.: Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association. Vol. 74, p. 427–431. (1979). Di Matteo, Aste y Dacorogna.: Term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development. Journal of Banking & Finance. Vol. 29, p. 827-851. (2005). Eckmann, J.P. y Ruelle, D.: Ergodic Theory of Chaos and Strange Attractors. Review of Modern Physics. Vol. 57, Nº 3, p. 617-656. (1985). Eckmann J.P. y Ruelle D.: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D. Vol 56, p.185-187. (1992). Engle, R.F.: Autorregresive Conditional Heterocedasticity with Estimates of the Variance of the U.K. Inflation. Econométrica. Vol. 50, Nº 4, p. 987-1007. (1982). Fama, E. y French K. R.: Permanent and temporary components of stock prices. Journal of Political Economy. Vol. 98, p. 247-273. (1988). Fama, E.: Efficient capital markets: A review of theory and empirical work. Journal of Finance. Vol. 25, p. 383-417. (1970). Fraser, A. y H. Swinney.: Independent coordinates for strange attractors from mutual information. Physical Review A. Vol. 33, p.1134-1140. (1986). Gilmore, Claire G.: A new test for chaos. Journal of Economic Behaviour Organisations. Vol. 22, p. 209-237. (1993). Grassberger, P. y Procaccia, I.: Characterization of Strange Attractors. Physical Review Letters. Vol. 50, Nº3, p. 346-349. (1983). Grassberger, P y Procaccia, I.: Measuring the Strangeness of Strange Attractors. Physica D 9, p. 189-208. (1983). Hawking, S.: Historia del Tiempo del Big Bang a los Agujeros Negros. Editorial Critica 1ª Edición, Barcelona. (2005). Hurst H.E.: Long-term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers. Vol. 116, p. 770-799. (1951). Kyaw N., Los C. y Zong S.: Persistence Characteristics of Latin American Financial Markets. Economics Working Paper, Archive EconWPA, Finance Nº 0411013. (2004). Kennel M.B., Brown R., y Abarbanel H.D.I.: Determining embedding dimension for phase space reconstruction using a geometrical construction. Physica. Review A, Nº 45, p. 403-3411. (1992). Le Barón, B.: Chaos and nonlinear forecastability in Economics and Finance. Philosophical Transactions of Royal Society of London, Series A, 348, p. 397-404. (1994). Lipka J. M. y Los C.: Long-Term Dependence Characteristics Of European Stock Indices. Economics Working Paper Archive, EconWPA, Finance Nº 0409044. (2003). Lo, A. W.: Long-term memory in stock market prices. Econometrica. Vol. 59, p. 1279-1313. (1991). Lo, A. y MacKinley A. C.: Stock market prices do not follow random walk: Evidence from a simple specification test. Review of Financial Studies. Vol. I, p. 41-66. (1988). Los, C.: Visualization of Chaos for Finance Majors. Economics Working Paper Archive, EconWPA, Finance Nº 0409035. (2004). Los C. y Yu B.: Persistence Characteristics of the Chinese Stock Markets. Economics Working Paper Archive, EconWPA, Finance Nº 0508008. (2005). Lorenz, E.N.: Detrministic nonperiodic Flow. Journal of Atmospheric Sciences. Vol. 20, p. 130. (1963). Ljung, G. y G. Box.: On a Measure of Lack of Fit in Time Series Models. Biometrika. Vol. 65, p. 297-303. (1979). Lyapunov, A.M.: The general Problem of the Stability of Motion. Number 17 in Annals of Mathematics Studies. Princeton University Press, Princeton, N.J., 1947. Reprinted from Ann. Fac. Sci. Univ. Toulouse, p. 27-247, 1907, a French translation of a Russian original from 1893. English translation: The General Problem of the Stability of Motion. Taylor and Francis, London. (1992). Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco. (1982). Mindlin, G.B. y Gilmore, R.: Topological analysis and synthesis of chaotic time series. Physica D, Nº58, p. 229-242. (1992) Packard, N.H., Crutchfield, J.P., Farmer, J.D. y Shaw, R.S.: Geometry from a time series. Physical Review Letters. Vol. 47, p. 712-716. (1980). Peters, E.: Fractal Market analysis: Applying chaos theory to investment and economics. John Wiley & Sons Inc. (1994). Peters. E.: Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, 2nd Edition. John Wiley & Sons Inc., 288 p.(1996). Phillips, P.C.B. y Perron, P.: Testing for a Unit Root in Time Series Regression. Biometrika. Vol. 75, p. 335–346. (1988). Rajaratnam P. y Weston R.: A Chaotic Analysis of the New Zealand Exchange Rate. New Zealand Association of Economists (Inc.). Research classified by Journal of Economic Literature (JEL) code f31. (2004). Rosenstein M.T., Collins J.J. y De Luca C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. Vol.65, p. 117-134. (1993). Ruelle, D. y Takens, F.: On the nature of turbulence. Math. Phys. Vol. 20, p. 167-192. (1971). Sano M., y Sawada Y.: Measurement of the Lyapunov Spectrum fron a Chaotic Time Series. Physical Review Letters, Vol. 55, Nº 10, p. 1082-1085. (1985). Sato S., Sano M., y Sawada Y.: Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Progress of Theoretical Physics. Vol. 77, No. 1, p. 1-5. (1987). Takens, F.: Detecting Strange Attractors in Turbulence, en Dynamical Systems and Turbulence. Warwick 1980, Lecture Notes in Mathematics 898, Springer, Berlin, p. 366-381. (1981). Wolf A., Swift J.B., Swinney H.L y Vastano J.A.: Determining Lyapunov exponents from a time series. Physica D. Vol. 16. p. 285-317. (1985). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/2794 |