Ausloos, Marcel and Vandewalle, N. and Ivanova, K. (2000): Time is money. Published in: in "Noise, Oscillators and Algebraic Randomness. From Noise in Communication Systems to Number Theory", M. Planat, Ed., , Vol. 50, No. Lect. Notes Phys. (2000): pp. 156-171.
Preview |
PDF
MPRA_paper_28703.pdf Download (303kB) | Preview |
Abstract
Abstract. Specialized topics on financial data analysis from a numerical and physical point of view are discussed when pertaining to the analysis of coherent and random sequences in financial fluctuations within (i) the extended detrended fluctuation analysis method, (ii) multi-affine analysis technique, (iii) mobile average intersection rules and distributions, (iv) sandpile avalanches models for crash prediction, (v) the (m, k)-Zipf method and (vi) the i-variability diagram technique for sorting out short range correlations. The most baffling result that needs further thought from mathematicians and physicists is recalled: the crossing of two mobile averages is an original method for measuring the ”signal” roughness exponent, but why it is so is not understood up to now.
Item Type: | MPRA Paper |
---|---|
Original Title: | Time is money |
Language: | English |
Keywords: | sand-pile; avalanches; Zipf; variability diagram; signal; roughness exponent; detrended fluctuation analysis; moving average; multi-affine analysis |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods |
Item ID: | 28703 |
Depositing User: | M Ausloos |
Date Deposited: | 09 Feb 2011 09:35 |
Last Modified: | 27 Sep 2019 10:05 |
References: | 1. L. Bachelier, Th´eorie de la sp´eculation, Ph. D. thesis, Acad. Paris (1900) 2. R.N. Mantegna and H.E. Stanley Nature, 376, 46-49 (1995) 3. E.E. Peters, Fractal Market Analysis : Applying Chaos Theory to Investment and Economics, (Wiley Finance Edition, New York, 1994) 4. M. Ausloos, Europhys. News 29, 70-72 (1998) 5. N. Vandewalle and M. Ausloos, in Fractals and Beyond. Complexity in the Sciences, M.M. Novak, Ed. (World Scient., Singapore, 1999) p.355-356. 6. N. Vandewalle and M. Ausloos, Physica A, 246, 454-459 (1997) 7. N. Vandewalle, Ph. Boveroux, A. Minguet and M. Ausloos, Physica A 255, 201-210 (1998) 8. H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng and M. Simmons, Physica A 200, 4-24 (1996) 9. N. Vandewalle and M. Ausloos, Int. J. Comput. Anticipat. Syst. 1, 342-349 (1998) 10. B. J. West and B. Deering, The Lure of Modern Science: Fractal Thinking, (World Scient., Singapore, 1995) 11. C.-K. Peng, J.M. Hausdorff, S. Havlin, J.E. Mietus, H.E. Stanley, and A.L. Goldberger, Physica A 249, 491-500 (1998) 12. M. Schroeder, Fractals, Chaos and Power Laws, (W.H. Freeman and Co., New York, 1991) 13. K. J. Falconer,The Geometry of Fractal Sets, (Cambridge Univ. Press, Cambridge, 1985) 14. P. S. Addison, Fractals and Chaos, (Inst. of Phys., Bristol, 1997) 16. N. Vandewalle and M. Ausloos, Int. J. Phys. C 9, 711-720 (1998) 17. K. Ivanova and M. Ausloos, Eur. J. Phys. B 8 665-669 (1999) 18. N. Vandewalle and M. Ausloos, Eur. J. Phys. B 4, 257-261 (1998) 19. A. L. Barab´asi and T. Vicsek, Phys. Rev. A 44, 2730-2733 (1991) 20. A. Davis, A. Marshak, and W. Wiscombe, in Wavelets in Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds. (Academic Press, New York, 1994) pp. 249-298 21. A. Marshak, A. Davis, R. Cahalan, and W. Wiscombe Phys. Rev. E 49, 55-69 (1994) 22. A.-L. Barab´asi and H.E. Stanley, Fractal Concepts in Surface Growth, (Cambridge Univ. Press, Cambridge, 1995) 23. J. Feder, Fractals, (Plenum, New-York, 1988) 25. A.G. Ellinger, The Art of Investment, (Bowers & Bowers, London, 1971) 26. J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127-294 (1990) 27. N. Vandewalle and M. Ausloos, Phys. Rev. E 58, 6832-6834 (1998) 28. L. Frachebourg, P.L. Krapivsky, and S. Redner, Phys. Rev. E 55, 6684-6689 (1997) 29. D. Sornette, A. Johansen, and J.-Ph. Bouchaud, J. Phys. I (France) 6, 167-175 (1996) 30. H.E. Stanley, Phase Transitions and Critical Phenomena, (Oxford Univ. Press, Oxford, 1971) 31. D. Sornette, Physics Reports 297, 239-270 (1998) 32. J.C. Anifrani, C. Le Floc’h, D. Sornette and B. Souillard, J. Phys. I (France) 5, 631-63 (1995) 277 33. D. Stauffer and D. Sornette, Physica A 252, 271- (1998) 34. N. Vandewalle, R. D’hulst, and M. Ausloos, Phys. Rev. E 59, 631-635 (1999) 36. N. Vandewalle and M. Ausloos, Eur. J. Phys. B 4, 139-141 (1998) 37. H. Dupuis, Trends Tendances 22(38), (september 18, 1997) p.26-27 38. H. Dupuis, Trends Tendances 22(44), (october 30, 1997) p.11 39. D. Daoˆut, Le Vif L’Express (october 30, 1997) p.124-125 41. J.-Ph. Bouchaud, P. Cizeau, L. Laloux, and M. Potters, Phys. World 12, 25-29 (1999) 42. L. Laloux, M. Potters, R. Cont, J.-P. Aguilar, and J.-P. Bouchaud, Europhys. Lett. 45, 1-5 (1999) 43. J.R. Macdonald and M. Ausloos, Physica A 242, 150-160 (1997) 44. M. Ausloos, J. Phys. A 22, 593-609 (1989) 45. G.K. Zipf, Human Behavior and the Principle of Least Effort, (Addisson- Wesley, Cambridge, MA, 1949) 46. W. Ebeling and A. Neiman, Physica A 215, 233-241 (1995) 47. B. Vilensky Physica A 231, 705-711 (1996) 48. M.H.R. Stanley, S.V. Buldyrev, S. Havlin, R.N. Mantegna, M.A. Salinger, and H.E. Stanley, Ecomonics Letters, 49, 453-457 (1995) 50. M. Marsili and Y.-C. Zhang, Phys. Rev. Lett. 80, 2741-2744 (1998) 52. M. S. Watanabe Phys. Rev. E 53, 4187-4190 (1996) 53. A. Czirok, R.N. Mantegna, S. Havlin, and H.E. Stanley, Phys. Rev. E 52, 446- 452 (1995) 54. G. Troll and P.B. Graben, Phys. Rev. E 57, 1347-1355 (1998) 55. A. Babloyantz and P. Maurer, Phys. Lett. A 221, 43-55 (1996) 56. K. Ivanova and M. Ausloos, Physica A 265, 279-286 (1999). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/28703 |