Heinemann, Hergen H. (1971): Ein allgemeines Dekompositionsverfahren fuer lineare Optimierungsprobleme. Published in: Zeitschrift fuer betriebswirtschaftliche Forschung No. 22 (1970): pp. 302-317.
Preview |
PDF
MPRA_paper_28842.pdf Download (8MB) | Preview |
Abstract
A Really GENERAL Decomposition Algorithm for Very Large Linear Optimization Problems
Proven theory as Regards Optimality and Finality
Advantageous for very large problems with a rather small percentage of real variables in the optimal solution - Simplex method is used as a calculating sub-routine -
NO SPECIAL STRUCTURE OF MATRIX REQUIRED - Method applicable without change for non-structures as well as for any and all structures of matrix.
Maximum necessary problem size to be calculated with simplex method procedure: a bit more than a matrix of optimal-solution original variables and optimal solution restrictions - single-stage or double-stage decomposition possible - parametric-programming-similar re-calculations possible. For consultancy on slight extensions in theory as well as on important extensions in calculation tactics you may contact Dr. Hergen Heinemann: Hergen.Heinemann"et"alumni.insead.edu
Detailed ABSTRACT of Theory
(1) From the total problem matrix (TPM) partial problems (PP) are taken arbitrarily, but every variable should be represented in at least one of them.
(2) PPA´s are equipped with suitable functions for optimization and are optimized with the simplex method procedure.
(3) The optimized solutions of the PPA´s serve to obtain variables for an auxiliary problem (AP), which is then optimized to reflect an optimal combination of the optimized PP`s.
(4) With the optimal dual values of the AP the actual values for every variable of the to-be-optimized function of the TPM are calculated.
(5) With the actual values for every variable of the to-be-optimized function of the TPM a test is done to check whether the optimal solution of the TPM is already reached.
(6) Is the optimum solution of the TPM reached, then the algorithm is at the end. If not, the algorithm continues with item (2) above with a new set of variables and using the actual values of the variables of the to-be-optimized function as per item (3), starting a new cycle of the algorithm.
Original copy may be available at:
Titel: Ein allgemeines Dekompositionsverfahren fuer lineare Optimierungsprobleme (in English: A General Decomposition Algorithm for Linear Optimization Problems) ( To obtain a copy of this operations research on linear programming paper e-mail to Technische Universitaet, Braunschweig:) fernleihe@tu-bs.de
Author: Heinemann, Hergen Published: 1971 No. of pages: III, 80 S. ; 8º Doctoral Degree Paper: Saarbruecken, University, Diss., 1971 Signature: 2400-3106 / Tiefmagazin, 2. UG
Item Type: | MPRA Paper |
---|---|
Original Title: | Ein allgemeines Dekompositionsverfahren fuer lineare Optimierungsprobleme |
English Title: | A General Decomposition Algorithm for Linear Optimization Problems |
Language: | German |
Keywords: | general decomposition algorithm; allgemeiner Dekompositionsalgorithmus; linear optimization problems; lineare Optimierungsprobleme; Dekomposition; linear programming; lineare Programmierung; Operations Research; very large linear optimizationproblems; Dekompositionsalgorithmus fuer lineare Optimierungsprobleme; Dr. Hergen Heinemann; Endlichkeitsbeweis; optimality; finality; Optimalitätsbeweis |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C65 - Miscellaneous Mathematical Tools C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 28842 |
Depositing User: | Hergen H. Heinemann |
Date Deposited: | 14 Feb 2011 12:52 |
Last Modified: | 28 Sep 2019 04:51 |
References: | Abadie, J.M. : Le principe de decomposition de Dantzig et Wolfe, in: Revue Francaise de Recherche Operationelle, 4 (1960), S. 93-115 Abadie, J.M. : On Decomposition Principle, in : Bericht Nr. 63-20 des Operation Research Center der Universität Californien, Berkeley, 1963 Abadie, J.M., A.C. Williams : Dual and parametric methods in decomposition, in : Recent advances in mathematical programming, Hrsg. : Graves, R. u. P. Wolfe, McGraw Hill (1963), S. 149-158 Adam, D. u. W. Roehrs : Ein Algorithmus zur Dekomposition linearer Planungsprobleme, in : Zeitschrift fuer Betriebwirtschaft, 37 (1967), S. 395-417 Adam, D. : Entscheidungsorientierte Kostenbewertung, Wiesbaden 1970, S. 196-230 Balas, E. : An infeasibility pricing decomposition method for linear programs, in : Operations Research (ORSA), 14 (1966), S. 847-873 Balas, E. : Une methode de decomposition quasi-primale-duale pour des programmes lineaires, I-Variable, in : Comptes Rendues de l`Academie des Sciences, Paris, 261 (1965) 4. Oktober, S. 2572-2574 Balas, E. : idem, II-Variante, in : Comptes Rendues de l`Academie des Sciences, Paris, 261 (1965) 18. Oktober, S. 2809-2811 Baumel, W.J., u. T. Fabian : Decomposition, pricing for decentralisation and external economies, in : Management Science, 11 (1964), S. 1-32 Beale, E.M.L., P.A.B. Hughes u. R.E. Small : Experiences in using a decomposition program, in : The Computer, 8 (1965), S. 13-18 Bell, E.J. : Primal-dual decompositon programming, in : Bericht Nr. 65-23 des Operation Research Center der Universität Californien, Berkeley, August 1965 Benders, J.F. : Partition in mathematical programming, Dissertation, Utrecht (1960) Benders, J.F. : Partitioning procedures for solving mixed-variables programming problems, in : Numerische Mathematik, 4 (1962), S. 238-252 Bennet, J.M. : An approach to some structured linear programming problems, in : Operations Research (ORSA), 14 (1966), S. 636-645 Bennet, J.M. u., D.R. Greene : idem, in : Operations Research (ORSA), 17 (1969), S. 749-750 Dantzig, G.B. : Lineare Programmierung und Erweiterungen, Springer-Verlag, Berlin, Heidelberg, New York 1966 Dantzig, G.B., u. M.B. Shapiro : Solving the chemical equilibrium problem using the decomposition principle, in : Rand-Report P-2056, 10.August 1960 Dantzig, G.B., u. P. Wolfe : A decomposition principle for linear programs, in : Rand-Report P-1544, 10. November 1958, revidiert : 6. November 1959 Dantzig, G.B., u. P. Wolfe : A decomposition principle for linear programs, in :Oprations Research (ORSA) 8 (1960), S. 101-111 Dantzig, G.B., u. P. Wolfe : The decomposition algorithm for linear programs, in : Econometrica, 29 (1961), S. 767-778 Grosse, L. : Loesung groesserer linearer Optimierungsaufgaben mit dem Dekompositionsverfahren nach Dantzig-Wolfe, in : Wissenschaftliche Zeitschrift der Hochschule fuer Oekonomie Berlin, 11 (1966), Heft 2, S. 159-161 Grosse, L. : Loesung groesserer linearer Optimierungsaufgaben mit dem Dekompositionsverfahren nach Dantzig-Wolfe, in : H. Bader u.a. (Hrsg.) : Mathematik und Wirtschaft, Band 4, Westdeutscher Verlag Koeln, Opladen, 1967 Harvey, R.P. : The decomposition principle for linear programming, in : International Journal of Computer Mathematics, 1 (1964), S. 20-35 Heestermann, A.R.G. : Special simplex algorithm for multi-sector problems, in : Numerische Mathematik, 12 (1968), S. 288-306 Heestermann, A.R.R., u. J. Sandee : Special simplex algorithm for linked problems, in : Management Science, 11 (1965), S. 420-427 Heinemann, H. : Ein allgemeines Dekompositionsverfahren für lineare Optimierungsprobleme, in : Zeitschrift fuer betriebswirtschaftliche Forschung, 22 (1970), s. 302-317 Hu, T.G. : A decomposition algorithm for shortest paths in a network, in : IBM Research Report RC-1562, Februar 1966 Hu, T.G. : A decomposition algorithm for shortest paths in a network, in : Operations Research (ORSA), 16 (1968), 91-102 Koenig, J.W.J. : Dynamische Optimierungsmodelle der chemischen Industrie, Dissertation, Hamburg 1968 Kuenzi, H.P., u. S.T. Tan : Lineare Optimierung grosser Systeme, in : Lecture Notes in Mathematics, 27 (1966), Hrsg. : Dold, A., u. B. Eckmann, Springer-Verlag, Berlin, Heidelberg, New York, 1966 Luettken, H. : Reduktion und Dekomposition von PERT-Netzen, in : Ablauf- und Planungsforschung, 8 (1967), S. 370-379 Luettken, H. : Reduktion und Dekomposition von Planungsnetzen, in : Ablauf- und Planungsforschung, 7 (1966), S. 92-104 Macguire, C.B. : Some extension of the Dantzig-Wolfe decomposition scheme, Center for Research in Management Science, Universitaet Californien, Berkeley, Working Paper Nr. 66, Maerz 1963 Marschak, J. : Computation, decomposition and internal pricing, Center for Research in Management Science, Universitaet Californien, Berkeley, Working Paper Nr. 56, Dezember 1962 Mills, G. : A decomposition algorithm for the shortest route problem, in: Oprations Research (ORSA), 14 (1966), S. 279-291 Mueller-Merbach, H. : Das Prinzip der "direkten Dekomposition" in der linearen Planungsrechnung, in : Zeitschrift fuer angewandte Mathematik und Mechanik, 46 (1966), Sonderheft, S. T102-T104 Mueller-Merbach, H. : Das Verfahren der direkten Dekomposition in der linearen Planungsrechnung, in : Ablauf- und Planungsforschung, 6 (1965), S. 306-322 Ohse, D. : Numerische Erfahrungen mit zwei Dekompositionsverfahren der linearen Planungsrechnung, in : Ablauf- und Planungsforschung, 8 (1967), Heft 2, S. 289-301 Nemhauser, G.L. : Decomposition for linear programming by dynamic programming, in : Naval Research Logistics Quarterly, 11 (1964), S. 191-195 Parikh, S.C., u. W.S. Jewell : Decomposition of project network, in : Management Science, 11 (1965), S. 444-459 Rech, P. : Decomposition and interconnected systems in mathematical programming, Bericht Nr. 65-31 des Operations Research Center (ORSA), Universitaet Californien, Berkeley, September 1965 Rosen, J.B. : Convex partition programming, in : Recent advances in mathematical programming, Hrsg.: Graves, R., u. P. Wolfe, McGraw Hill 1963, S. 159-176 Rosen, J.B. : Primal partition programming for block-diagonal matrices, in : Numerische Mathematik,, 6 (1964), S. 250-260 Rosen, J.B., u. J.C. Ornea : Solution of nonlinear programming problems by partitioning, in : Management Science, 10 (1963/1964), S. 160-173 Sanders, J.L. : A nonlinear decomposition principle, in : Operations Research (ORSA), 13 (1965), S. 266-271 Tan, S.T. : Beitraege zur Dekomposition von linearen Programmen (I und II), in : Unternehmensforschung, 10(1966),S. 168-189 und 247-268 Tournol du Clos, J. : Note sur la decomposition matricielle triangulaire. Application a l`inversion matricielle et la resulution des systemes lineaires, in : Revue Francaise d`informatique et des recherche operationelle, Nr. 3, Mai-Juni 1976 Tuy, P.H. : Sur le probleme des constraintes supplementaires en programmation lineaire et son application au probleme de decomposition, in : Elektronische Informationsverarbeitung und Kybernetik, 3 (1967), S. 141.156 Whinston, A. : A decomposition algorithm for quadratic programming, Cowles Foundation, Discussion Paper 172, Yale University, Juni 1964 Whinston, A. : A dual decomposition algorithm for quadratic programming, in : Cahiers du Centre d`Edudes de Recherche Operationelle, 6 (1964), S. 188-201 Zangwill, W.I. : A decomposable nonlinear programming approach, in : Operations Research (ORSA), 15 (1967), S. 1068-1087 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/28842 |