Mastronardi, Leonardo Javier and Romero, Carlos Adrián (2012): Estimación de matrices de insumo producto regionales mediante métodos indirectos. Una aplicación para la ciudad de Buenos Aires.
Preview |
PDF
MPRA_paper_37006.pdf Download (230kB) | Preview |
Abstract
The input output analysis is used by a lot of cities with the objective to study interregional trade problems. We focused our work on Argentina, and we present a model with two regions: Buenos Aires city and the rest of the country. Buenos Aires does not have an Input Output Tables or a regional account system, so we have to estimate the model with non-survey and calibration techniques. Non-survey techniques are commonly used to model intraregional trade in a region. We used the AFLQ location quotient to estimate the trade in each region. Then we must to compute the regional imports/exports, and for this we based our work on calibration techniques. Biproportional adjustment (RAS) and cross entropy were the calibration techniques used to build the interregional input output model. In the presented case the work find that cross entropy could reply exactly the national input output tables, because it enforce additional constraints. If we look the results, RAS technique overestimate the Buenos Aires technical coefficients compared with cross entropy. There are not substantial differences on technical coefficients between RAS and cross entropy in the other region.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimación de matrices de insumo producto regionales mediante métodos indirectos. Una aplicación para la ciudad de Buenos Aires |
English Title: | A non-survey estimation for regional input-output tables. An application for Buenos Aires City. |
Language: | Spanish |
Keywords: | Matriz insumo-producto regional. RAS. Entropía. Coeficientes de localización |
Subjects: | R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R5 - Regional Government Analysis > R58 - Regional Development Planning and Policy D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D57 - Input-Output Tables and Analysis R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R15 - Econometric and Input-Output Models ; Other Models C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C67 - Input-Output Models |
Item ID: | 37006 |
Depositing User: | Leonardo Javier Mastronardi |
Date Deposited: | 29 Feb 2012 19:40 |
Last Modified: | 27 Sep 2019 16:11 |
References: | Bacharach, M., 1970. “Biproportional Matrices and Input-Output Change”. Cambridge, Cambridge University Press. Chisari, O. et al., 2010. “Un modelo de equilibrio general computable para la Argentina 2006”. Serie de textos de discusión N° 63.. Instituto de Economía. FACE. UADE. Faye, M., Mastronardi, L. y Romero, C., 2012. “Análisis de coeficientes de localización. El caso de la provincia de Córdoba”. Documento de trabajo. MPRA paper 36997, University Library of Munich, Germany. Flegg, A. T. y C. D. Webber, 1996a. “Using location quotients to estimate regional input-output coefficients and multipliers”, Local Economic Quaterly. 4, 58-86 Flegg, A. T. y C. D. Webber, 1996b. “The FLQ formula for generating regional input-output tables: an application and reformation”, Working Papers in Economics No. 17, University of the West of England, Bristol. Flegg, A. T., Eliott, M. V. y Webber, C. D., 1997. “On the appropiate use of location quotients in generating regional Input-Output tables”, Regional Studies 29, 547-561. Flegg, A. T. y C. D. Webber, 1997. “On the appropiate use of location quotients in generating regional Input-Output tables: Reply”, University of the West of England, Bristol. Flegg A. T. y C. D. Webber, 2000. “Regional size, regional specialization and the FLQ formula”, University of the West of England, Bristol. Fuentes Flores, N. A., 2002. “Matrices de Insumo-Producto de los estados fronterizos del norte de México”. Universidad Autónoma de Baja California, Plaza y Valdéz, México. Golan, A., Judge, G. y Miller, D., 1994. “Recovering information from incomplete or partial multisectoral economic data”, Review of Economics and Statistics 76, pp.541-549. Jensen et. al., 1979. “Regional Economic Planning”. Croom Helm, Londres. Kullback, S. and Leibler,R., 1951. “On information and sufficiency”. Annals of Mathematical Statistics, 22. 79-86. Leontief, W, 1983. “Análisis económico Input-Output”. Orbis, España. McCann P. y Dewhurst J. H. L., 1998. “Regional size, industrial location and input-output expenditure coefficients”, Regional Studies, 32, 435-444. Robinson, S., A. Cattaneo y M. El-Said (2001). “Updating and Estimating a Social Accounting Matrix Using Cross Entropy Methods”, Economic Systems Research 13:1, pp. 47-64. Romero, C., 2009. “Calibración de modelos de equilibrio general computado: métodos y práctica usual”. MPRA paper 17767, University Library of Munich, Germany. Stone, R, 1962. “Multiple classifications in social accounting”. Bulletin de l’Institut International de Statistique, 39(3), pp.215-233. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/37006 |