Bekker, Paul A. and Crudu, Federico (2012): Symmetric Jackknife Instrumental Variable Estimation.
Preview |
PDF
MPRA_paper_37853.pdf Download (386kB) | Preview |
Abstract
This paper gives a new jackknife estimator for instrumental variable inference with unknown heteroskedasticity. The estimator is derived by using a method of moments approach similar to the one that produces LIML in case of homoskedasticity. The estimator is symmetric in the endogenous variables including the dependent variable. Many instruments and many weak instruments asymptotic distributions are derived using high-level assumptions that allow for the simultaneous presence of weak and strong instruments for different explanatory variables. Standard errors are formulated compactly. We review briefly known estimators and show in particular that the symmetric jackknife estimator performs well when compared to the HLIM and HFUL estimators of Hausman et al. (2011) in Monte Carlo experiments.
Item Type: | MPRA Paper |
---|---|
Original Title: | Symmetric Jackknife Instrumental Variable Estimation |
Language: | English |
Keywords: | Instrumental Variables, Heteroskedasticity, many Instruments, Jackknife |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models |
Item ID: | 37853 |
Depositing User: | Federico Crudu |
Date Deposited: | 05 Apr 2012 17:26 |
Last Modified: | 08 Oct 2019 05:09 |
References: | Ackerberg, D. A., P. J. Devereux (2003): `Improved JIVE estimators for overidentied linear models with and without heteroskedasticity', Working paper. Andrews, D. W. K., J. H. Stock (2007): `Testing with many weak instruments',Journal of Econometrics, 138, 24-46. Angrist, J. D., G. W. Imbens, A. Krueger (1999): `Jackknife instrumental variable estim-ators',Journal of Applied Econometrics, 14, 57-67. Bekker, P. A., (1994): `Alternative approximations to the distributions of instrumental variable estimators',Econometrica, 54, 657-682. Bekker, P. A., J. van der Ploeg (2005): `Instrumental variable estimation based on grouped data',Statistica Neerlandica, 59, 239-267. Blomquist, S., M. Dahlberg (1999): `Small sample properties of LIML and Jackknife IV estimators: experiments with weak instruments',Journal of Applied Econometrics, 14, 69-88. Chamberlain, G., G. Imbens (2004): `Random eects estimators with many instrumental variables',Econometrica, 72, 295-306. Chao, J., N. Swanson (2005): `Consistent estimation with a large number of weak instru-ments',Econometrica, 73, 1673-1692. Davidson, R., J. G. MacKinnon (2006): `The case against JIVE',Journal of Applied Eco-nometrics, 21, 827-833. Donald, S. J., W. K. Newey (2000): `A jackknife interpretation of the continuous updating estimator',Economics Letters, 67, 239-243. Fuller, W. A. (1977): `Some properties of a modication of the limited information estim-ator',Econometrica, 45, 939-954. Hahn, J. (2002): `Optimal inference with many instruments',Econometric Theory, 18, 140-168. Hahn, J., J. A. Hausman, G. M. Kuersteiner (2004): `Estimation with weak instruments: accuracy of higher-order bias and MSE approximations', Econometrics Journal, 7, 272-306. Hahn, J., A. Inoue (2002): `A Monte Carlo comparison of various asymptotic approxima-tions to the distribution of instrumental variables estimators',Econometric Reviews, 21, 309-336. Han, C., P. C. B. Phillips (2006): `GMM with many moment conditions',Econometrica, 74, 147-192. Hansen, L. P. (1982): `Large sample properties of generalized method of moments estim-ators',Econometrica, 50, 1029-1054. Hansen, L. P., J. Heaton, A. Yaron (1996): `Finite-sample properties of some alternative GMM estimators',Journal of Business and Economic Statistics, 14, 398-422. Hausman, J. A., W. K. Newey, T. Woutersen, J. Chao, N. Swanson (2011): `Instrumental variable estimation with heteroskedasticity and many instruments',Working paper. Kunitomo, N., (1980): `Asymptotic expansions of distributions of estimators in a linear functional relationship and simultaneous equations', Journal of the American Statistical Association, 75, 693-700 Morimune, K., (1983): `Approximate distributions of k-class estimators when the degree of overidentiability is large compared with the sample size',Econometrica,51, 821-842. Newey, W. K., F. Windmeijer (2009): `Generalized method of moments with many weak moment condition',Econometrica, 77, 687-719. Phillips, G. D. A., C. Hale (1977): `The bias of instrumental variable estimators of simul-taneous equation systems', International Economic Review, 18, 219-228 Stock, J., M. Yogo (2005): `Asymptotic distributions of instrumental variables statistics with many instruments', inIdentication and inference for econometric models: es-says in honor of Thomas Rothenberg, Ch. 6, D. W. K Andrews and J. H. Stock eds., Cambridge University Press. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/37853 |