Mariolis, Theodore and Tsoulfidis, Lefteris (2012): On Bródy’s conjecture: facts and figures from the US economy.
Preview |
PDF
MPRA_paper_43719.pdf Download (373kB) | Preview |
Abstract
Bródy’s conjecture is submitted to an empirical test using input-output flow data of varying size for the US economy for the benchmark years 1997 and 2002, as well as for the period 1998-2010. The results suggest that the ratio of the modulus of the subdominant eigenvalue to the dominant one increases both with the size of the matrix and, for the same matrix size, over the years lending support to the view of increasing instability (in the sense of Bródy) for the US economy over the period 1997-2010.
Item Type: | MPRA Paper |
---|---|
Original Title: | On Bródy’s conjecture: facts and figures from the US economy |
Language: | English |
Keywords: | Actual Economies; Bródy’s Conjecture; Eigenvalue Distribution; Speed of Convergence |
Subjects: | E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E32 - Business Fluctuations ; Cycles D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D57 - Input-Output Tables and Analysis C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C67 - Input-Output Models C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C62 - Existence and Stability Conditions of Equilibrium |
Item ID: | 43719 |
Depositing User: | Theodore Mariolis |
Date Deposited: | 12 Jan 2013 05:39 |
Last Modified: | 08 Oct 2019 16:43 |
References: | Białas, S. and Gurgul, H. (1998) On hypothesis about the second eigenvalue of the Leontief matrix, Economic Systems Research, 10 (3), pp. 285-289. Bidard, C. and Schatteman, T. (2001) The spectrum of random matrices, Economic Systems Research, 13 (3), pp. 289-298. Bienenfeld, M. (1988) Regularity in price changes as an effect of changes in distribution, Cambridge Journal of Economics, 12 (2), pp. 247-255. Bródy, A. (1970) Proportions, Prices and Planning. A Mathematical Restatement of the Labor Theory of Value (Budapest: Akadémiai Kiadó, and Amsterdam: North-Holland). Bródy, A. (1997) The second eigenvalue of the Leontief matrix, Economic Systems Research, 9 (3), pp. 253-258. Goldberg, G., Okunev, P., Neumann, M. and Schneider, H. (2000) Distribution of subdominant eigenvalues of random matrices, Methodology and Computing in Applied Probability, 2 (2), pp. 137-151. Goldberg, G. and Neumann, M. (2003) Distribution of subdominant eigenvalues of matrices with random rows, Society for Industrial and Applied Mathematics Journal on Matrix Analysis and Applications, 24 (3), pp. 747-761. Goodwin, R. M. (1976) Use of normalized general co-ordinates in linear value and distribution theory, in: K. R. Polenske and J. V. Skolka (Eds) (1976) Advances in Input-Output Analysis, pp. 581-602 (Cambridge, MA: Ballinger). Goodwin, R. M. (1977) Capital theory in orthogonalised general co-ordinates, in: R. M. Goodwin (1983) Essays in Linear Economic Structures, pp. 153-172 (London: Macmillan). Iliadi, F., Mariolis, Th., Soklis, G. and Tsoulfidis, L. (2012) Bienenfeld’s approximation of production prices and eigenvalue distribution: some more evidence from five European economies, MPRA Paper 36282, University Library of Munich, Germany, http://mpra.ub.uni-muenchen.de/36282/1/MPRA_paper_36282.pdf. Keyfitz, N. and Caswell, H. (2005) Applied Mathematical Demography, Third Edition (New York: Springer). Maitre, J. F. (1970) Sur la séparation des valeurs propres d’une matrice positive, Revue Française d’Informatique and et de recherche opérationnel, Série Rouge, 4 (3), pp. 118-124. Mariolis, T. (2010) Norm bounds for a transformed price vector in Sraffian systems, Applied Mathematical Sciences, 4 (9–12), pp. 551-574. Mariolis, T. and Tsoulfidis, L. (2009) Decomposing the changes in production prices into ‘capital-intensity’ and ‘price’ effects: theory and evidence from the Chinese economy, Contributions to Political Economy, 28 (1), pp. 1-22. Mariolis, T. and Tsoulfidis, L. (2011). Eigenvalue distribution and the production price-profit rate relationship: theory and empirical evidence, Evolutionary and Institutional Economics Review, 8 (1), pp. 87-122. Molnár, G. and Simonovits, A. (1998) The subdominant eigenvalue of a large stochastic matrix, Economic Systems Research, 10 (1), pp. 79- 82. Morishima, M. and Catephores, G. (1978) Value, Exploitation and Growth (London: McGraw-Hill). Ostrowski, A. M. (1963) On positive matrices, Mathematische Annalen, 150 (3), pp. 276-284. Pasinetti, L. (1973). The notion of vertical integration in economic analysis, Metroeconomica, 25 (1), pp. 1-29. Schefold, B. (2008) Approximate surrogate production functions, Institut für Volkswirtschaftslehre, Johann Wolfgang Goethe-Universität, Mimeo (New version (2010) available at: http://host.uniroma3.it/eventi/sraffaconference2010/abstracts/pp_schefold.pdf). Seneta, R. E. (2006) Non-negative Matrices and Markov Chains, Revised Printing, Springer Series in Statistics (New York: Springer). Shaikh, A. (2012) The empirical linearity of Sraffa’s critical output-capital ratios, in: C. Gehrke, N. Salvadori, I. Steedman and R. Sturn (Eds) (2012) Classical Political Economy and Modern Theory. Essays in honour of Heinz Kurz, pp. 89-101 (London and New York: Routledge). Sraffa, P. (1960) Production of Commodities by Means of Commodities. Prelude to a Critique of Economic Theory (Cambridge: Cambridge University Press). Steedman, I. (1999) Vertical integration and ‘reduction to dated quantities of labour’, in: G. Mongiovi and F. Petri (Eds) (1999) Value Distribution and Capital. Essays in Honour of Pierangelo Garegnani, pp. 314-318 (London and New York: Routledge). Steenge, A. E. and Thissen, M. J. P. M. (2005) A new matrix theorem: interpretation in terms of internal trade structure and implications for dynamic systems, Journal of Economics, 84 (1), pp. 71-94. Stott, I., Townley, S. and Hodgson, D. J. (2011) A framework for studying transient dynamics of population projection matrix models, Ecology Letters, 14 (9), pp. 959-970. Sun, G.- Z. (2008) The first two eigenvalues of large random matrices and Brody’s hypothesis on the stability of large input-output systems, Economic Systems Research, 20 (4), pp. 429-432. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/43719 |