Logo
Munich Personal RePEc Archive

Un modelo GARCH con asimetria condicional autorregresiva para modelar series de tiempo: Una aplicacion para los rendimientos del Indice de Precios y Cotizaciones de la BMV

Duran-Vazquez, Rocio and Lorenzo-Valdes, Arturo and Ruiz-Porras, Antonio (2013): Un modelo GARCH con asimetria condicional autorregresiva para modelar series de tiempo: Una aplicacion para los rendimientos del Indice de Precios y Cotizaciones de la BMV.

[thumbnail of MPRA_paper_46328.pdf]
Preview
PDF
MPRA_paper_46328.pdf

Download (244kB) | Preview

Abstract

We develop a GARCH model with autoregressive conditional asymmetry to describe time-series. This means that, in addition to the conditional mean and variance, we assume that the skewness describes the behavior of the time-series. Analytically, we use the methodology proposed by Fernández and Steel (1998) to define the behavior of the innovations of the model. We use the approach developed by Brooks, et. al., (2005), to build it. Moreover, we show its usefulness by modeling the daily returns of the Mexican Stock Market Index (IPC) during the period between January 3rd, 2008 and September 29th, 2009.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.