Mishra, SK (2007): A Brief History of Production Functions.
Preview |
PDF
MPRA_paper_5254.pdf Download (180kB) | Preview |
Abstract
This paper gives an outline of evolution of the concept and econometrics of production function, which was one of the central apparatus of neo-classical economics. It shows how the famous Cobb-Douglas production function was indeed invented by von Thunen and Wicksell, how the CES production function was formulated, how the elasticity of substitution was made a variable and finally how Sato’s function incorporated biased technical changes. It covers almost all specifications proposed during 1950-1975, and further the LINEX production functions and incorporation of energy as an input. The paper in divided into (1) single product functions, (2) joint product functions, and (3) aggregate production functions. It also discusses the ‘capital controversy’ and its impacts.
Item Type: | MPRA Paper |
---|---|
Institution: | North-Eastern Hill University, Shillong (India) |
Original Title: | A Brief History of Production Functions |
Language: | English |
Keywords: | Production function; Cobb-Douglas; CES; Transcendental; translog; Zellner-Revankar; VES; Bruno; Kadiyala; Diewert; Kummel; Mundlak; Engineering production function; Multi-output; joint product; Data Envelopment; Household production function; Humbug production function; capital controversy; Cambridge controversy |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C30 - General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C20 - General D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity B - History of Economic Thought, Methodology, and Heterodox Approaches > B1 - History of Economic Thought through 1925 > B16 - Quantitative and Mathematical B - History of Economic Thought, Methodology, and Heterodox Approaches > B1 - History of Economic Thought through 1925 > B13 - Neoclassical through 1925 (Austrian, Marshallian, Walrasian, Stockholm School) |
Item ID: | 5254 |
Depositing User: | Sudhanshu Kumar Mishra |
Date Deposited: | 10 Oct 2007 |
Last Modified: | 26 Sep 2019 14:53 |
References: | · Al-Ayat, R. and Färe, R. (1977) “On the Existence of Joint Production Functions”, Research Report, Operations Research Center, California Univ., Berkeley; subsequently published in 1979 in Naval Research Logistics Quarterly, 26, pp. 627-630. · Arrow, K.J., Chenery, H.B., Minhas, B.S. and Solow, R.M. (1961) “Capital Labour Substitution and Economic Efficiency”, Review of Econ and Statistics, 63, pp. 225-250. · Banker, R.D., Charnes, R.F. and & Cooper, W.W. (1984) “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis”, Management Science, 30, pp. 1078-1092. · Barkai, H. (1959) “Ricardo on Factor Prices and Income Distribution in a Growing Economy,” Economica, 26, pp. 240–50. · Baumgärtner, S. (2004) “Price Ambivalence of Secondary Resources: Joint Production, Limits to Substitution, and Costly Disposal”, Resources, Conservation and Recycling, 43, pp. 95–117. · Becker, G.S. (1965) “A Theory of the Allocation of Time”, The Economic Journal, 75 (299), pp. 493-517. · Berndt, E. and Christensen, L. (1973) “The Translog Function and the Substitution of Equipment, Structures and Labor in U.S. Manufacturing, 1929-1968”, Journal of Econometrics, 1, pp. 81-114. · Berndt, E.R. and Wood, D.O. (1979) “Engineering and Econometric Interpretations of Energy-Capital Complementarity” American Economic Review, 69, pp. 342-354. · Blaug, M. (1985) Economic Theory in Retrospect, (4th ed). Cambridge University Press, Cambridge. · Bol, G. and Moechlin, O. (1975) “Isoquants of Continuous Production Correspondences” Naval Research Logistics Quarterly, 22, pp. 391-398. · Brown, M. and Cani, J.S. de (1963) “Technological Change and the Distribution of Income”, International Economic Review, 4, pp. 289-309. · Bruno, M. (1962) “A Note on the Implications of an Empirical Relationship between Output per unit of Labour, the Wage Rate and the Capital-Labour Ratio”, Unpub. mimeo, Stanford. · Bruno, M. (1968) “Estimation of Factor Contribution to Growth under Structural Disequilibrium”, International Economic Review, 9, pp. 49-62. · Burmeister, E. (2000) "The Capital Theory Controversy", in Critical Essays on Piero Sraffa's Legacy in Economics, in Kurz H.D (ed), Cambridge University Press, Cambridge. · Charnes, A., Cooper, W.W and Rhodes, E. (1978) "Measuring the Efficiency of Decision-making Units", European Journal of Operational Research, pp. 429-444. · Center for Economic Policy Analysis [CEPA] (?) “The Production Function”, http://cepa.newschool.edu/het/essays/product/prodfunc.htm · Chenery, H.B. (1949). "Engineering Production Functions", Quarterly Journal of Economics 63, pp. 507-531 · Chenery, H.B. (1950) Engineering Bases of Economic Analysis, Ph.D. dissertation, Harvard University, Harvard (Supervisor - W.W. Leontief). · Chetty, V.K. (1969) “Econometrics of Joint Production: A Comment”, Econometrica, 37(4), p. 731. · Chizmar, J.F. and Zak, T.A. (1983) “Modeling Multiple Outputs in Educational Production Functions” , The American Economic Review, 73(2), pp. 18-22. · Cobb, C.W. and Douglas, P.H. (1928). “A Theory of Production,” American Economic Review, 18, pp. 139–65. · Cohen, A.J. and Harcourt, G.C. (2003) “Retrospectives: Whatever Happened to the Cambridge Capital Theory Controversies?”, Journal of Economic Perspectives, 17 (1), pp. 199–214. · Dhrymes, P.J. and Mitchell, B.M. (1969) “Estimation of Joint Production Functions”, Econometrica, 37(4), pp. 732-736. · Diewert, W.E. (1971) “An Application of the Shepherd Duality Theorem: A Generalized Leontief Production Function”, The Journal of Political Economy, 79(3), pp. 481-507. · Emrouznejad, A. (2001) "An Extensive Bibliography of Data Envelopment Analysis (DEA)”, Working Papers, Volume I, Business School, University of Warwick. · Faber, M., Proops, J.L.R. and Stefan Baumgärtner, S. (1998) “All Production is Joint Production - A Thermodynamic Analysis” in Faucheux, S., Gowdy, J. and Nicolaï, I. (eds) Sustainability and Firms: Technological Change and the Changing Regulatory Environment, Edward Elgar, Cheltenham, pp. 131-158. · Färe, R. (1986) “On the Existence and Equivalence of Three Joint Production Functions”, Scand. J. of Economics, 88(4), pp. 669-674. · Farrell, J.M. (1957) "The Measurement of Productive Efficiency", Journal of the Royal Statistical Society, 120, pp. 253-281. · Felipe, J. and Fisher, F.M. (2001) "Aggregation in Production Functions: What Applied Economists Should Know", Metroeconomica, 54, pp. 208-262. Available at Social Science Research Network (SSRN) http://ssrn.com/abstract=422067. · Felipe, J. and Adams, F.G. (2005) "'A Theory of Production': The Estimation of the Cobb-Douglas Function: A Retrospective View", Eastern Economic Journal, 31(5), pp. 427-445. · Felipe, J. and McCombie, J.S.L. (2005) "How Sound Are The Foundations of the Aggregate Production Function?", Eastern Economic Journal, 31(5), pp. 467-488. · Felipe, J. and Holz, C.A. (2005) “On Production Functions, Technical Progress and Time Trends”, http://repository.ust.hk/dspace/bitstream/1783.1/2200/1/FelipeHolzprerefereedAggregateProdFcn3Nov98.pdf · Fioretti, G. (2006) “Production Function”, Working paper/Preprint available at http://arxiv.org/PS_cache/physics/pdf/0511/0511191.pdf · Fisher, F.M. (1993) Aggregation. Aggregate Production Functions and Related Topics. The MIT Press, Cambridge, MA. · Fisher, F.M. (2005) "Aggregate Production Functions - A Pervasive, But Unpersuasive, Fairytale", Eastern Economic Journal, 31(5), pp. 489-491. · Frisch, R. (1965) Theory of Production, D.Reidel, Dordrecht. · Gale, D. (1956) “A Closed Linear Model of Production”, in Kuhn, H.W. et al. (eds.), Linear Inequalities and Related Systems, Princeton University Press, pp. 285–303. · Gehrke, C. and Lager, C. (2000) "Sraffian Political Economy", Encyclopedia of Political Economy, Routledge. · Griffin, J.M. (1977) “The Economics of Joint Production: Another Approach”, The Review of Economics and Statistics, 59(4), pp. 389-397. · Georgecu-Roegen, N. (1951) “The Aggregate Linear Production Function and Its Applications to von Neumann's Economic Model”, in Koopmans, T.C. (ed), Activity Analysis of Production and Allocation, Cowles Commission Monograph, no. 13. Wiley, New York. · Georgescu-Roegen, N. (1971) The Entropy Law and the Economic Process, Harvard Univ. Press, Cambridge, Mass. · Graham, J.W. and Green, C.A. (1984) “Estimating the Parameters of a Household Production Function with Joint Products”, The Review of Economics and Statistics, 66 (2), pp. 277-282. · Griliches, Z. (1969) “Capital-Skill Complementarity”, Review of Economics and Statistics, 6, pp. 465-468, 1969. · Griliches, Z. and Ringstad, V. (1971) Economies of Scale and the Form of Production Function, North-Holland Publishing Co., Amsterdam. · Gronau, R. (1977) “Leisure, Home Production, and Work--the Theory of the Allocation of Time Revisited”, The Journal of Political Economy, 85 (6), pp. 1099-1123. · Halter, A.N., Carter, H.O. and Hocking, J.G. (1957) “A Note on the Transcendental Production Function”, Journal of Farm Economics, 29, pp. 966-974. · Hanoch, G. (1970) “Homotheticity in Joint Production”, Journal of Economic Theory, 2, pp. 423-426. · Harcourt, G.C. (1969) “Some Cambridge Controversies in the Theory of Capital”, Journal of Economic Literature, 7 (2), pp. 369-405. · Harris, D.J. (1973) “Capital, Distribution, and the Aggregate Production Function”, The American Economic Review, 63 (1), pp. 100-113. · Hicks, J.R. (1932), The Theory of Wages, 2nd Ed (1963), St Martin’s Press, NY. · Hotelling, H. (1936) “Relations Between Two Sets of Variates”, Biometrica, 28, pp. 321-377. · Hudson, E.A. and Jorgenson, D.W. (1974) “U.S. Energy Policy and Economic Growth, 1975-2000”, The Bell Journal of Economics and Management Science, 5, pp. 461-514. · Humphrey, T.M. (1997). “Algebraic Production Functions and their Uses before Cobb-Douglas”, Federal Reserve Bank of Richmond Economic Quarterly, 83(1), pp. 51-83. Available at http://ideas.repec.org/a/fip/fedreq/y1997iwinp51-83.html · Intriligator, M.D. (1978) Econometric Models, Techniques and Applications, Prentice Hall, Inc. New Jersey. · Jawetz, M.B. (1961) The Joint Production Function of Starch Equivalent and Protein Equivalent in Feeding Dairy Cows, Dept. of Economics, Univ. College of Wales, Aberystwyth. · Just, R.E., Zilberman, D. and Hochman, E. (1983) “Estimation of Multicrop Production Functions”, American Journal of Agricultural Economics, 65(4), pp. 770-780. · Kadiyala, K.R. (1972) “Production Functions and Elasticity of Substitution” Southern Economic Journal, 38(3), pp. 281-284. · Kendall, M.G. and Stuart, A. (1968) The Advanced Theory of Statistics, Vol. 3, Charles Griffin & Co. London. · Klein, L.R. (1947) The Use of Cross-Section Data in Econometrics with Application to a Study of Production of Railroad Services in the United States, (Mimeographed) National Bureau of Economic Research, Washington, DC. · Koopmans, T.C. (1979) “Economics among the Sciences”, The American Economic Review, 69, pp. 1-13. · Kümmel, R. (1982) “The Impact of Energy on Industrial Growth”, Energy - The International Journal, 7, pp. 189-203. · Kümmel, R., Strassl, W., Gossner, A., and Eichhorn, W. (1985): “Technical Progress and Energy Dependent Production Functions”, Journal of Economics, 45, pp. 285-311. · Kümmel, R., Lindenberger, D. and Eichhorn, W. (2000) “The Productive Power of Energy and Economic Evolution” Indian Journal of Applied Economics, pp. 1-26 available at ftp://ftp.physik.uni-wuerzburg.de/pub/preprint/1998/WUE-ITP-98-033.ps.gz · Kurz, H.D. (1986) “Classical and Early Neoclassical Economists on Joint Production”, Metroeconomica, 38, pp. 1-37. · Lavoie, M. (2000), "Capital Reversing", Encyclopedia of Political Economy, Routledge, 2000. · Levhari, D. and Samuelson, P.A (1966) “The Nonswitching Theorem is False”, The Quarterly Journal of Economics, 80 (4), pp. 518-19. · Libenstein, H. Blair, G. and Hodgson, M. (1988) “Allocative Efficiency versus X-Efficiency”, American Economic Review, 61, pp. 392-415. · Lindenberger, D. and Kummel, R. (2002) “Energy-Dependent Production Functions and the Optimization Model ‘PRISE’ of Price-Induced Sectoral Evolution”, Inernationalt. Journal of Applied Thermodynamics, 5(3), pp.101-107. · Lindenberger, D. (2003) “Service Production Functions”, EWI Working Paper No. 03.02, Institute of Energy Economics, University of Cologne (EWI), Cologne, http://www.ewi.unikoeln.de/ewi/content/e266/e283/e281/Ewiwp0302_ger.pdf · Liu, T.C. and Hildebrand, G.H. (1965) Manufacturing Production Functions in the United States, 1957. Cornell Univ. Press, Ithaca. · Lloyd, P.J. (1969) “Elementary Geometric/Arithmetic Series and Early Production Theory” , Journal of Political Economy, 77, pp. 21–34. · Lovell, C.A.L. and Schmidt, P. (1988) "A Comparison of Alternative Approaches to the Measurement of Productive Efficiency” in Dogramaci, A., Färe, R. (eds.) Applications of Modern Production Theory: Efficiency and Productivity, Kluwer: Boston. · Lucas, R. (1976) “Econometric Policy Evaluation: A Critique”, Carnegie-Rochester Conference Series on Public Policy, 1, pp. 19–46. · Manne, A.S. (1958) “A Linear Programming Model of the U.S. Petroleum Refinery Industry”, Econometrica, 26, pp. 67-106. · McFadden, D. (1962) Factor Substitution in the Economic Analysis of Production, Ph.D. Dissertation, Univ. of Minnesota. · McFadden, D. (1963) “Constant Elasticity of Substitution Production Function”, Review of Economic Studies, 30, pp. 73-83. · Mishra, S.K. (2006) “A Note on Numerical Estimation of Sato’s Two-Level CES Production Function” , SSRN at http://www.ssrn.com/author=353253 · Mishra, S.K. (2007-a) "Estimation of Zellner-Revankar Production Function Revisited." Economics Bulletin, 3 (14), pp. 1-7. · Mishra, S.K. (2007-b) “Least Squares Estimation of Joint Production Functions by the Differential Evolution method of Global Optimization” Social Science Research Network (SSRN ) at http://www.ssrn.com/author=353253 · Mishra, S.K. (2007-c) “Performance of Differential Evolution Method in Least Squares Fitting of Some Typical Nonlinear Curves”, SSRN http://ssrn.com/abstract=1010508 · Mitscherlich, E.A. (1909) “Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages,” Landw. Jahrb., 38, pp. 537–52. · Mukerji, V. (1963) “A Generalized SMAC Function with Constant Ratios of Elasticities of Substitution”, Review of Economic Studies, 30, pp. 233-236. · Mundlak, Y. (1963) “Specification and Estimation of Multiproduct Production Functions” (mimeographed), paper read at the meetings of the Econometric Society and the American Farm Economic Association, Pittsburgh, USA (Dec. 1962), summarized in the Journal of Farm Economics, 45 pp. 433-443. · Mundlak, Y. (1964) “Transcendental Multiproduct Production Functions”, International Economic Review, 5(3), pp. 273-284. · Mundlak, Y. and Razin, A. (1971) “On Multistage Multiproduct Production functions”, American Journal of Agricultural Economics, 53(3), pp. 491-499. · Nerlove, M. (1963) “Returns to Scale in Electricity Supply”, reprinted in Nerlove, M (1965) Estimation and Identification of Cobb-Douglas Production Functions, North-Holland Publishing Co., Amsterdam. · Nikaido, H. (1968) Convex Structures and Economic Theory. Academic Press, New York. · Pfouts, R.W. (1961) “The Theory of Cost and Production in the Multiproduct Firm”, Econometrica, 39, pp. 65-68. · Pollak, R.A. and Wachter, M.L. (1975) “The Relevance of the Household Production Function and Its Implications for the Allocation of Time”, The Journal of Political Economy, 83 (2), pp. 255-278. · Rao, P. (1969) “A Note on Econometrics of Joint Production” , Econometrica, 37(4), pp. 737-38. · Revankar, N.S. (1967) Production Functions with Variable Elasticity of Substitution and Variable Returns to Scale, Doctoral Dissertation, Univ. of Wisconsin, USA. · Revankar, N.S. (1971) “A Class of Variable Elasticity of Substitution Production Functions”, Econometrica, 39(1), pp. 61-71. · Ringstad, V. (1967) ”Econometric Analysis Based on Production Function with Neutrally Variable Scale Elasticity”, Swedish Journal of Economics, 69, pp. 115-123. · Robinson, J. (1953). “The Production Function and the Theory of Capital”, Review of Economic Studies. 21(2), pp. 81–106. · Russell, B. (1984) A History of Western Philosophy, Counterpoint edition, Unwin Paperbacks, London. · Salvadori, N. and Steedman, Z. (1988) “Joint Production Analysis in a Sraffian Framework”, Bulletin of Economic Research , 40 (3), pp. 165–196. · Samuelson, P.A. (1962) “Parable and Realism in Capital Theory: The Surrogate Production Function”, Review of Economic Studies, 29, pp. 193-206. · Samuelson, P.A. (1966) “Rejoinder: Agreements, Disagreements, Doubts, and the Case of Induced Harrod-Neutral Technical Change” Review of Economics and Statistics, 48(4), pp. 444-448. · Samuelson, P.A. (1979) “Paul Douglas’s Measurement of Production Functions and Marginal Productivities,” Journal of Political Economy, 87, pp. 923–939. · Sato, K. (1967) “A Two-Level Constant-Elasticity-of-Substitution Production Function”, Review of Economic Studies, 43, pp. 201-218. · Sato, R. (1970) “The Estimation of Biased Technical Progress and the Production Function”, International Economic Review, 11, pp. 179-208. · Sato, R. (1974) “On the Class of Seperable Non-Homothetic CES Functions”, Economic Studies Quarterly, 15, pp. 42-55. · Sato, R. (1975) “The Most General Class of CES Functions”, Econometrica, 43 (5-6), pp. 999-1003. · Sato, R. and Hoffman, R.F. (1968) “Production Functions with Variable Elasticity of Factor Substitution: Some Analysis and Testing”, Review of Economics and Statistics, 50, pp. 453-460. · Schumpeter, J.A. (1954) History of Economic Analysis. Allen & Unwin, London. · Shaikh, A. (1974) "Laws of Production and Laws of Algebra: The Humbug Production Function", The Review of Economics and Statistics, 56(1), pp. 115-120. Reprint available at the website http://homepage.newschool.edu/~AShaikh/humbug.pdf · Shaikh, A. (1980) "Laws of Production and Laws of Algebra—Humbug II", in Growth, Profits and Property (ed.) Nell. E.J., Cambridge Univ. Press, Cambridge. Reprint available at the website http://homepage.newschool.edu/~AShaikh/humbug2.pdf. · Shaikh, A. (2005) "Nonlinear Dynamics and Pseudo-Production Functions", Eastern Economic Journal, 31(5), pp. 447-466. · Seiford, L.M., and Thrall, R.M. (1990) "Recent Developments in DEA: The Mathematical Programming Approach to Frontier Analysis", Journal of Econometrics, 46, pp. 7-38. · Shephard, R.W. (1970) Theory of Cost and Production Functions, Princeton Univ. Press, Princeton, NJ. · Solow, R.M. (1957) “Technical Change and the Aggregate Production Function”, The Review of Economics and Statistics, 39 (3), pp. 312-320. · Spillman, W.J. (1924) The Law of Diminishing Returns. World Book Co., Yonkers-on-Hudson, New York. · Stigler, G.J. (1952) “The Ricardian Theory of Value and Distribution,” Journal of Political Economy, 60, pp. 187–207. · Stiglitz, J.E. (1974) “ The Cambridge-Cambridge Controversy in the Theory of Capital; A View from New Haven”, The Journal of Political Economy, 82 (4), pp. 893-903. · Thünen, J.H. von (1930) Der isolierte Staat in Beziehung auf Landwirthschaft und National¨okonomie. 3 volumes: Fischer, Jena, Germany. · Tintner, G., Deutsch, E. and Rieder, R. (1974) “A Production Function for Austria Emphasizing Energy” in Altman, FL, Kyn, O and Wagener, HJ (eds) On the Measurement of Factor Productivities, Vandenhoek & Ruprecht, Göttingen, pp. 151-164. · Uzawa, H. (1962) “Production Functions with Constant Elasticities of Substitution”, Review of Economic Studies, 29, pp. 291-299. · Velupillai, K. (1973) “The Cobb-Douglas or the Wicksell Function? – A Comment,” Economy and History, 16, , pp. 111–13. · Vinod, H.D. (1968) “Econometrics of Joint Production”, Econometrica, 36(2), pp. 322-336. · Vinod, H.D. (1969) “Econometrics of Joint Production – A Reply”, Econometrica, 37(4), pp. 739-740. · Vinod, H.D. (1976) “Canonical Ridge and Econometrics of Joint Production”, Journal of Econometrics, 4(2), pp. 147-166. · von Neumann, J. (1937). “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”, in: Ergebnisse eines Mathematischen Kolloquiums, No. 8, 1935–1936, Franz–Deuticke, 1937, pp. 73-83. [Translated: A model of general economic equilibrium, Review of Economic Studies 13 (1945–1946), pp.1-9.]. · Weaver, R.D. (1983) “Multiple Input, Multiple Output Production Choices and Technology in the U.S. Wheat Region”, American Journal of Agricultural Economics, 65(1), pp. 45-56. · Whitaker, J.K. (1975) The Early Economic Writings of Alfred Marshall, 1867–1890, Vol. 2. (ed). The Free Press, New York. · Wibe, S. (1984) “Engineering Production Functions: A Survey”, Economica, New Series, 51(204), pp. 401-411. · Wicksell, K. (1923) “Real Capital and Interest”, 1923 Review of Gustaf Akerman’s Realkapital und Kapitalzins, in Robbins, L. (1934) ed., Lectures on Political Economy, Vol 1: General Theory, Appendix 2. Routledge & Kegan Paul, London. · Wicksteed, P.H. (1894) An Essay on the Co-ordination of the Laws of Distribution, Macmillan & Co., London. At http://cepa.newschool.edu/het/texts/wicksteed/wickess.pdf · Wikipedia-a () “Production Function” http://en.wikipedia.org/wiki/Production_function · Wikipedia-b () “Koopmans’ Theorem” http://en.wikipedia.org/wiki/Koopmans'_theorem · Zellner, A. and Revankar, N.S. (1969) “Generalized Production Functions”, The Review of Economic Studies, 36(2), pp. 241-250. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/5254 |