Millo, Giovanni (2014): Robust standard error estimators for panel models: a unifying approach.
Preview |
PDF
MPRA_paper_54954.pdf Download (529kB) | Preview |
Abstract
The different robust estimators for the standard errors of panel models used in applied econometric practice can all be written and computed as combinations of the same simple building blocks. A framework based on high-level wrapper functions for most common usage and basic computational elements to be combined at will, coupling user-friendliness with flexibility, is integrated in the 'plm' package for panel data econometrics in R. Statistical motivation and computational approach are reviewed, and applied examples are provided.
Item Type: | MPRA Paper |
---|---|
Original Title: | Robust standard error estimators for panel models: a unifying approach |
Language: | English |
Keywords: | Panel data; covariance matrix estimators; R |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C87 - Econometric Software |
Item ID: | 54954 |
Depositing User: | Dr Giovanni Millo |
Date Deposited: | 14 Jul 2014 19:58 |
Last Modified: | 26 Sep 2019 14:17 |
References: | Alvarez RM, Garrett G, Lange P (1991). Government Partisanship, Labor Organization, and Macroeconomic Performance. The American Political Science Review, pp. 539-556. Anselin L (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publisher, Dordrecht. Arai M (2009). Cluster-robust Standard Errors Using R. Technical report, Department of Economics and SULCIS, Stockholm University. URL http://people.su.se/ma/clustering. pdf. Arellano M (1987). Computing Robust Standard Errors for Within Group Estimators. Oxford Bulletin of Economics and Statistics, 49, 431-434. Arellano M (2003). Panel Data Econometrics. Oxford University Press. Bailey D, Katz JN (2011). Implementing Panel-Corrected Standard Errors in R: The pcse Package. Journal of Statistical Software, Code Snippets, 42(1), 1-11. ISSN 1548-7660. URL http://www.jstatsoft.org/v42/c01. Beck N, Katz J (1995). What to do (and not to do) with Time-Series Cross-Section Data. The American Political Science Review, 89(3), 634-647. Beck N, Katz J (1996). Nuisance vs. Substance: Specifying and Estimating Time-Series-Cross-Section Models. Political Analysis, 6(1), 1-36. Beck N, Katz JN, Alvarez RM, Garrett G, Lange P (1993). Government Partisanship, Labor Organization, and Macroeconomic Performance: A Corrigendum. American Political Science Review, pp. 943-948. Cameron A, Gelbach J, Miller D (2011). \Robust Inference With Multiway Clustering. Journal of Business and Economic Statistics, 29(2), 238-249. Chen X, Lin S, Reed WR (2009). A Monte Carlo Evaluation of the Efficiency of the PCSE Estimator. Applied Economics Letters, 17(1), 7-10. Chudik A, Pesaran M, Tosetti E (2011). Weak and Strong Cross-Section Dependence and Estimation of Large Panels. The Econometrics Journal, 14(1), c45-c90. Coakley J, Fuertes AM, Smith R (2006). Unobserved Heterogeneity in Panel Time Series Models. Computational Statistics & Data Analysis, 50(9), 2361-2380. Croissant Y, Millo G (2008). Panel Data Econometrics in R: The plm Package. Journal of Statistical Software, 27(2). URL http://www.jstatsoft.org/v27/i02/. Driscoll J, Kraay A (1998). Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. The Review of Economics and Statistics, 80(4), 549-560. Fama EF, MacBeth JD (1973). Risk, Return, and Equilibrium: Empirical Tests. The Journal of Political Economy, pp. 607-636. Fox J, Weisberg S (2011). An R Companion to Applied Regression. Second edition. Sage, Thousand Oaks CA. URL http://socserv.socsci.mcmaster.ca/jfox/Books/ Companion. Franzese R (1996). A Gauss Procedure to Estimate Panel-Corrected Standard-Errors with Non-Rectangular and/or Missing Data. The Political Methodologist, 7(2), 2-3. Froot KA (1989). Consistent Covariance Matrix Estimation with Cross-Sectional Dependence and Heteroskedasticity in Financial Data. Journal of Financial and Quantitative Analysis, 24(3), 333-355. Golden M, Picci L (2008). Pork-Barrel Politics in Postwar Italy, 1953-94. American Journal of Political Science, 52(2), 268-289. Gow I, Ormazabal G, Taylor D (2010). Correcting for Cross-Sectional and Time-Series Dependence in Accounting Research. The Accounting Review, 85(2), 483-512. Greene W (2003). Econometric Analysis. 5th edition. Prentice Hall. Hothorn T, Hornik K, Van De Wiel MA, Zeileis A (2006). A Lego System for Conditional Inference. The American Statistician, 60(3). Liang K, Zeger S (1986). Longitudinal Data Analysis Using Generalized Linear Models. Biometrika, 73, 13-22. Long J, Ervin L (2000). Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. The American Statistician, 54(3), 217-224. Lumley T, Zeileis A (2007). sandwich: Model-Robust Standard Error Estimation for Cross-sectional, Time Series and Longitudinal Data. R package version 2.0-2. URL http://CRAN.R-project.org. MacKinnon J, White H (1985). Some Heteroskedasticity-consistent Covariance Matrix Estimators With Improved Finite Sample Properties. Journal of Econometrics, 29, 305-325. Moulton B (1990). An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Units. The Review of Economics and Statistics, 72(2), 334-338. Moulton BR (1986). Random Group Effects and the Precision of Regression Estimates. Journal of Econometrics, 32(3), 385-397. Munnell A (1990). Why Has Productivity Growth Declined? Productivity and Public Investment. New England Economic Review, pp. 3-22. Newey W, West K (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation consistent Covariance Matrix. Econometrica, 55(3), 703-708. Parks RW (1967). Efficient Estimation of a System of Regression Equations when Disturbances are both Serially and Contemporaneously Correlated. Journal of the American Statistical Association, 62(318), 500-509. Pesaran M (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica, 74(4), 967-1012. Pesaran MH, Smith R (1995). Estimating Long-run Relationships from Dynamic Heterogeneous Panels. Journal of Econometrics, 68(1), 79-113. Petersen MA (2009). Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches. Review of Financial Studies, 22(1), 435-480. R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. Rogers W (1993). sg17: Regression Standard Errors in Clustered Samples. Stata Technical Bulletin, 13, 19-23. Stock J, Watson M (2003). Introduction to Econometrics. Prentice Hall. Thompson S (2011). Simple Formulas for Standard Errors that Cluster by both Firm and Time. Journal of Financial Economics, 99(1), 1-10. White H (1980). Asymptotic Theory for Econometricians. Academic Press, Orlando. White H (1984). A Heteroskedasticity{Consistent Covariance Matrix and a Direct Test for Heteroskedasticity. Econometrica, 48, 817-838. Wilson SE, Butler DM (2007). A lot more to do: The sensitivity of time-series cross-section analyses to simple alternative specifications. Political Analysis, 15(2), 101-123. Wooldridge J (2002). Econometric Analysis of Cross-section and Panel Data. MIT press. Zeileis A (2004). Econometric Computing With HC and HAC Covariance Matrix Estimators. Journal of Statistical Software, 11(10), 1-17. URL http://www.jstatsoft.org/v11/i10/. Zeileis A (2006). Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software, 16(9), 1-16. URL http://www.jstatsoft.org/v16/i09/. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/54954 |