Nonejad, Nima (2014): Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox.
Preview |
PDF
MPRA_paper_55662.pdf Download (731kB) | Preview |
Abstract
This paper details particle Markov chain Monte Carlo (PMCMC) techniques for analysis of unobserved component time series models using several economic data sets. PMCMC provides a very compelling, computationally fast and efficient framework for estimation and model comparison. For instance, we estimate a stochastic volatility model with leverage effect and one with Student-t distributed errors. We also model time series characteristics of US inflation rate by considering a heteroskedastic ARFIMA model where heteroskedasticity is specified by means of a Gaussian stochastic volatility process.
Item Type: | MPRA Paper |
---|---|
Original Title: | Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox |
Language: | English |
Keywords: | Bayes, Metropolis-Hastings, Particle filter, Unobserved components |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling |
Item ID: | 55662 |
Depositing User: | Mr Nima Nonejad |
Date Deposited: | 01 May 2014 15:44 |
Last Modified: | 30 Sep 2019 19:23 |
References: | Andrieu, C., and A. Doucet. 2002. “Particle filtering for partially observed Gaussian state space models.” Journal of the Royal Statistical Society B 64(4): 827-836. Andrieu, C., A. Doucet, and R. Holenstein. 2010. “Particle Markov chain Monte Carlo methods (with discussion).” Journal of the Royal Statistical Society B 72(3): 1-33. Baillie, R. T., C. F. Chung, M. A. Tieslau. 1996. “Analysing inflation by the fractionally integrated ARFIMA-GARCH model.” Journal of Applied Econometrics 11(1): 23-40. Beran, J. 1994. Statistics for Long-Memory Processes. Chapman and Hall. Bos, C. S. 2011. “A Bayesian Analysis of Unobserved Component Models Using Ox.” Journal of Statistical Software 41(13): 1-24. Bos, C. S. 2013. GnuDraw. URL http://www.tinbergen.nl/~cbos/gnudraw.html. Bos, C. S., S. J. Koopman, and M. Ooms. 2012. “Long memory with stochastic variance model: A recursive analysis for U.S. inflation.” Computational Statistics and Data Analysis, forthcoming. Chan, J. 2013. “Moving Average Stochastic Volatility Models with Application to Inflation Forecast.” Journal of Econometrics 176(2): 162-172. Chib, S., E. Greenberg. 1995. “Understanding the Metropolis-Hastings Algorithm.” The American Statistician 49(4): 327-335. Chib, S., F. Nadari, and N. Shephard. 2002. “Markov chain Monte Carlo methods for stochastic volatility models.” Journal of Econometrics 108(2): 281-316. Creal, D. 2012. “A survey of sequential Monte Carlo methods for economics and finance.” Econometric Reviews 31(3): 245-296. Del Moral, P. 2004. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer. Doornik, J. A. 2009. An Object-Oriented Matrix Language Ox 6. Timberlake Consultants Press. Doucet, A., S. J. Godsill, and C. Andrieu. 2000. “On sequential Monte Carlo sampling methods for Bayesian filtering.” Statistics and Computing 10(3): 197-208. Flury, T., and N. Shephard. 2011. “Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models.” Econometric Theory 27(5): 933-956. Gelfand, A., and D. Dey. 1994. “Bayesian Model Choice: Asymptotics and Exact Calculations.” Journal of the Royal Statistical Society B 56(3): 501-514. Geweke, J. 2005. Contemporary Bayesian Econometrics and Statistics. Wiley. Grassi, S., and T. Proietti. 2010. “Has the Volatility of U.S. Inflation Changed and How?” Journal of Time Series Econometrics 2(1): Article 6. Hansen, P. R., A. Lunde, and J. M. Nason. 2011. “The Model Confidence Set.” Econometrica 79(2): 453-497. Jacquier, E., N. G. Polson, and P. E. Rossi. 1994. “Bayesian Analysis of Stochastic Volatility Models.” Journal of Business & Economic Statistics 12: 371-417. Kass, R. E., and A. E. Raftery. 1995. “Bayes Factors.” Journal of the American Statistical Association 90: 773-795. Kim, C. J., and C. R. Nelson. 1999. State Space Models with Regime Switching Classical and Gibbs Sampling Approaches with Applications. MIT Press. Kim, S., N. Shephard, and S. Chib. 1998. “Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models.” Review of Economic Studies 65(3): 361-393. Koop, G. 2003. Bayesian Econometrics. John Wiley & Sons Ltd. Koopman, S. J., and E. H. Uspensky. 2002. “The stochastic volatility in mean model: empirical evidence from international stock markets.” Journal of Applied Econometrics 17(6): 667-689. Liu, J. S., and R. Chen. 1998. “Sequential Monte Carlo Methods for Dynamic Systems.” Journal of the American Statistical Association 93(443): 1032-1044. Pitt, M. K., and N. Shephard. 1999. “Filtering via Simulation: Auxiliary Particle Filters.” Journal of the American Statistical Association 94: 590-599. So, M. K. P., C. W. S. Chen, and M. Chen. 2005. “A Bayesian Threshold Nonlinearity Test for Financial Time Series.” Journal of Forecasting 24(1): 61-75. Stock, J. H., and M. W. Watson. 2007. “Why Has U.S. Inflation Become Harder to Forecast?” Journal of Money, Credit, and Banking 39(1): 3-34. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/55662 |