Logo
Munich Personal RePEc Archive

Short term Bayesian inflation forecasting for Tunisia

Dahem, Ahlem (2015): Short term Bayesian inflation forecasting for Tunisia. Published in: ECOFORUM JOURNAL , Vol. 5, No. 1 (8) (2016)

[thumbnail of MPRA_paper_66702.pdf]
Preview
PDF
MPRA_paper_66702.pdf

Download (837kB) | Preview

Abstract

In order to explain clearly inflation forecasting and the dynamic of Tunisian prices, this paper uses two econometric approaches, the Standard VAR and Bayesian VAR (BVAR), to assess three models for predicting inflation, the mark-up model, the monetary model and Phillips curve over the period 1990 Q1 – 2013 Q4. In order to compare predictions, an out-of-sample estimation was conducted. We used the structural break test of Bai & Perron (1998, 2003) and the RMSE criterion for both inflation indices: CPI and PPI. We found that the Bayesian VECM mark-up model is best suited to forecast inflation for Tunisia. Our conclusions corroborate the literature of Bayesian VAR forecasting. Our findings indicate that the models which incorporate more economic information outperform the benchmark autoregressive models (AR (1) and AR (2)). The results reveal that forecasting with the BVECM markup model leads to a reduction in forecasting error compared to the other models. The results of the study are relevant to decision-makers to predict inflation in the short- and long-terms in Tunisia and may help them adopt the appropriate strategies to contain inflation.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.