Stefanescu, Răzvan and Dumitriu, Ramona (2017): Ajustarea seriilor de timp financiare,Partea întâi.
Preview |
PDF
MPRA_paper_78329.pdf Download (2MB) | Preview |
Abstract
The financial time series smoothing could facilitate the identification of some important characteristics such as the trend, the cyclic or the seasonal pattern. It could be also useful in forecasting the evolutions of some financial variables. In this paper we approach some smoothing techniques, such as the simple or the centered moving average.
Item Type: | MPRA Paper |
---|---|
Original Title: | Ajustarea seriilor de timp financiare,Partea întâi |
English Title: | Smoothing of financial time series, Part 1 |
Language: | Romanian |
Keywords: | Financial Time Series, Smoothing, Forecasting |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes G - Financial Economics > G0 - General > G00 - General G - Financial Economics > G1 - General Financial Markets > G10 - General |
Item ID: | 78329 |
Depositing User: | Razvan Stefanescu |
Date Deposited: | 17 Jan 2018 07:09 |
Last Modified: | 01 Oct 2019 18:08 |
References: | Aadland, D. (2002). Detrending time-aggregated data. Economics Research Institute Study Paper, 5, 1. ftp://129.123.19.10/RePEc/usu/pdf/ERI2002-05.pdf Abraham, B., & Ledolter, J. (2005). Statistical methods for forecasting. John Wiley & Sons, Inc. Publication. Andersen, T. G., Davis, R. A., Kreiss, J. P., & Mikosch, T. V. (Eds.). (2009). Handbook of financial time series. Springer – Verlag Berlin. Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8(1), 69-80. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1075&context=marketing_papers Armstrong, J. S., & Collopy, F. (2007). Rule-based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations. Retrieved from http://repository.upenn.edu/marketing_papers/68 Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Third Edition. Springer. Brown, R. G. (2004). Smoothing, forecasting and prediction of discrete time series. Dover Publications, Inc. Reprint, Originally published in 1963 by Prentice-Hall, Inc., Englewood Cliffs. Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics, 31(3), 281-318. Carbone, R., & Armstrong, J. S. (1982). Evaluation of extrapolative forecasting methods: Results of a survey of academicians and practitioners. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1086&context=marketing_papers Carlberg, C. (2015). More Predictive Analytics: Microsoft Excel. Que Publishing. Chatfield, C. (1988). What is the ‘best’method of forecasting?. Journal of Applied Statistics, 15(1), 19-38. Chatfield, C. (2016). The analysis of time series: an introduction, Sixth Edition. Chapman & Hall/CRC, New York. Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1, 223-236. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.480.6085&rep=rep1&type=pdf De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal of Forecasting, 22(3), 443-473. https://pdfs.semanticscholar.org/6b2a/6e8107642bb2137db52ecbd1805fd9632d93.pdf Diebold, F. X., & Lopez, J. A. (1996). Forecast evaluation and combination. prepared for G.S. Maddala and C.R. Rao (eds.), Handbook of Statistics, Amsterdam. http://economics.sas.upenn.edu/~fdiebold/papers/paper9/paeva.pdf Doane, D. P., & Seward, L. E. (2013). Applied statistics in business and economics. Fourth Edition, McGraw-Hill/Irwin, New York. Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8(1), 81-98. Granger, C. W., & Newbold, P. (1973). Some comments on the evaluation of economic forecasts. Applied Economics, 5(1), 35-47. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. Kaeppel, J. (2009). Seasonal stock market trends. John Wiley & Sons, Inc., Hoboken, New Jersey. Lawrence, K. D., Klimberg, R. K., & Lawrence, S. M. (2009). Fundamentals of forecasting using Excel. Industrial Press, Inc., New York. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer. Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E. & Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1(2), 111-153. Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. Second Edition. John Wiley & Sons, Inc., Hoboken, New Jersey. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconmic time series: some evidence and implications. Journal of Monetary Economics, 10(2), 139-162. http://www.ccee.edu.uy/ensenian/catmetec/material/Plosser.PDF Pant, P. N., & Starbuck, W. H. (1990). Innocents in the forest: Forecasting and research methods. Journal of Management, 16(2), 433-460. Prado, R., & West, M. (2010). Time series: modeling, computation, and inference. Chapman and Hall/CRC, New York. Sewell, M. (2011). Characterization of financial time series. UCL Department of Computer Science, Research Note RN/11/1. http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_Information/RN_11_01.pdf Stefanescu, R., & Dumitriu, R. (2010). Bazele Statisticii. Editura Europlus, Galaţi. Stefanescu, R., & Dumitriu, R. (2015). Conţinutul analizei seriilor de timp financiare. Available at SSRN: http://ssrn.com/abstract=2672628 Stefanescu, R., & Dumitriu, R. (2016). Statistica descriptivă a seriilor de timp financiare. Available at SSRN: https://ssrn.com/abstract=2801838 Swift, L., & Piff, S. (2014). Quantitative methods: for business, management and finance. Forth Edition. Palgrave Macmillan, New York. Tsay, R. S. (2005). Analysis of financial time series. Second Edition. John Wiley & Sons. Watson, M. W. (1986). Univariate detrending methods with stochastic trends. Journal of monetary economics, 18(1), 49-75. https://www.princeton.edu/~mwatson/papers/Watson_JME_1986.pdf Wegner, T. (2007) Applied Business Statistics: Methods and Excel-based applications. Second Edition. Juta & Co. Ltd., Cape Town. Weiers, R. (2011) Introduction to Business Statistics. Seventh Edition. Cengage Learning. Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series; with engineering applications, The M.I.T. Press, Cambridge. Woodward, W. A., Gray, H. L., & Elliott, A. C. (2011). Applied time series analysis. Chapman and Hall/CRC, New York. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/78329 |