Dominique, C-Rene (2017): An Empirical Theory of Pure Exchange:Individual Demand and Equilibrium.
Preview |
PDF
MPRA_paper_78694.pdf Download (683kB) | Preview |
Abstract
SUMMARY: Scientists question the ‘scientificity’ of Neoclassical Economic Theory because microeconomics depends on an un-observable utility function, while the modern version of the theory requires that macroeconomics be built on microfoundations. The first step in remedying such an incongruous analytics is to use ‘naïve’ set theory to show that the utility function is indeed a misleading appendage.
Item Type: | MPRA Paper |
---|---|
Original Title: | An Empirical Theory of Pure Exchange:Individual Demand and Equilibrium |
English Title: | An Empirical Theory of Pure Exchange: Individual Demand and Equilibrium |
Language: | English |
Keywords: | KEYWORDS: Properties of Relations, Order Isomorphisms, Individual Demand, Equilibrium, Attractors’ Reconstruction |
Subjects: | B - History of Economic Thought, Methodology, and Heterodox Approaches > B4 - Economic Methodology D - Microeconomics > D5 - General Equilibrium and Disequilibrium D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D50 - General |
Item ID: | 78716 |
Depositing User: | C-Rene Dominique |
Date Deposited: | 23 Apr 2017 05:59 |
Last Modified: | 04 Oct 2019 22:46 |
References: | Barzilai, J. (2010), “Preference Function Modelling: The Mathematical Foundation of Decision Theory.” In Ehrgott, M., Figueira, J. R. and Greco, S, (eds.) Trends in Multiple Criteria Analysis, Springer, 57-86: Boston. Barzilai, J. (2011), “On Ordinal, Cardinal, and Expected Utility.” Technical Report, Dept. of Industrial Engineering, Dalhousie University, Halifax, N. S. Canada, 4-7. Barzilai, J, (2013). “Inapplicable Operations on Ordinal, Cardinal, and Expected Utility.” Real-World Economics Re-view, 63, 98-102. Debreu, G. (1970). “Economies with a Finite Set of Equilibria.” Econometrica, 38 (3), 387-392. Dominique, C-R. (2008), “Walrasian Solutions Without Utility Functions.” Economics and Econometrics Research Institute, EERI Research Papers, Brussels, October. Gödel, K. (1931). “Uber formal unentscheid bare Satze der Principia Mathematica und verwandter Systeme I.” Monatshefte fur Mathematik und Physik, v, 38, 173-198. Ingrao, B. and Israel, G. (1990). The Invisible Hand. MIT Press, 154-161: Cambridge. Liu, Z. (2009). “Chaotic Time Series Analysis.” Mathematical Problems in Engineering, vol. 2010, Art.ID 720190. Mané, R. (1980). “On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps.” In Rand, D. A. and Young, L. S. (eds) Volume 898 of Springer Lecture Notes in Mathematics, Berlin: Springer Verlag, 320. Sonnenschein, H. (1972), “Market Excess Demand Functions.” Econometrica, 40 (3), 549-563. Sonnenschein, H. (1973). “Do Walras’ Law and Continuity Characterize the Class of Community Excess Demand Functions.” Journal of Economics Theory, 6, 345-354. Takens, F. (1981). “Detecting Strange Attractors in Turbulence.” In Rand, D. A. anYoung, L. S. (eds) Dynamical Systems and Turbulence. New York: Springer Verlag, d 366-381. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/78716 |