Logo
Munich Personal RePEc Archive

The Use of GARCH Models in VaR Estimation

Angelidis, Timotheos and Benos, Alexandros and Degiannakis, Stavros (2004): The Use of GARCH Models in VaR Estimation. Published in: Statistical Methodology , Vol. 2, No. 1 (2004): pp. 105-128.

[thumbnail of MPRA_paper_96332.pdf]
Preview
PDF
MPRA_paper_96332.pdf

Download (458kB) | Preview

Abstract

We evaluate the performance of an extensive family of ARCH models in modelling daily Valueat-Risk (VaR) of perfectly diversified portfolios in five stock indices, using a number of distributional assumptions and sample sizes. We find, first, that leptokurtic distributions are able to produce better one-step-ahead VaR forecasts; second, the choice of sample size is important for the accuracy of the forecast, whereas the specification of the conditional mean is indifferent. Finally, the ARCH structure producing the most accurate forecasts is different for every portfolio and specific to each equity index.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.