Kindop, Igor (2021): Ubiquitous multimodality in mixed causal-noncausal processes.
Preview |
PDF
MPRA_paper_109594.pdf Download (1MB) | Preview |
Abstract
According to the literature, the bimodality of estimates in mixed causal–non-causal autoregressive processes is due to unlucky starting values and happens only ocassionally. This paper shows that a unique and convergent solution is not always the case for models of this class. Instead, the likelihood function is not convex leading to the multimodality of estimated parameters. It can be attributed to the magnitude and sign of the autoregressive coefficients. Simultaneously, the number of local modes grows with the number of autoregressive parameters in the model. This multimodality depends on the parameters of the process and the chosen error distribution. We have to apply grid search methods to extract candidate solutions. The independence of residuals is a necessary hypothesis for the proper identification of the processes. A simple AIC criterion helps to select an independent model. Finally, I sketch a roadmap on estimating mixed causal-noncausal autoregressive models and illustrate the approach with Brent spot oil price returns.
Item Type: | MPRA Paper |
---|---|
Original Title: | Ubiquitous multimodality in mixed causal-noncausal processes. |
English Title: | Ubiquitous multimodality in mixed causal-noncausal processes. |
Language: | English |
Keywords: | non-causal model, non-convex likelihood, non-Gaussian, nonfundamentalness, multimodality. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications |
Item ID: | 109594 |
Depositing User: | Igor Kindop |
Date Deposited: | 06 Sep 2021 14:44 |
Last Modified: | 06 Sep 2021 14:45 |
References: | Alessi, L., Barigozzi, M., & Capasso, M. (2011). Non-fundamentalness in structural econometric models: A review.International Statistical Review,79(1), 16-47. Andrews, B., & Davis, R. A. (2013). Model identification for infinite variance autoregressive processes.Journal of Econometrics,172, 222 - 234. Andrews, B., Davis, R. A., & Breidt, F. J. (2006). Maximum likelihood estimation for all-pass time series models.Journal of Multivariate Analysis,97, 1638–1659. Balakrishnan, N., Kannan, N., & Nagaraja, H. (2004).Advances in ranking and selection, multiple comparisons, and reliability. Statistics for industry and technology. Birkhauser Boston. Bec, F., Nielsen, H., & Saidi, S. (2020). Mixed causal–noncausal autoregressions: Bimodality issues in estimation and unit root testing.Oxford Bulletin of Economics and Statistics. Breidt, F. J., Davis, R. A., Lii, K.-S., & Rosenblatt, M. (1991). Maximum likelihood estimation for noncausal autoregressive processes.Journal of Multivariate Analysis,36, 175-198. Brockwell, P., & Davis, R. (1991).Time-series: series and methods. (2nd ed.). Springer series in statistics. Franke, R. (2014). How non-normal is US output? Metroeconomica.,66. Gorieroux, C., & Zakoian, J. (2013, April). Explosive bubble modeling by non-causal process.Working Paper. Center for Research in Economics and Statistics. Gourieroux, C., & Jassiak, J. (2017). Noncausal var: Representation, identification, and semi-parametric estimation.Journal of Econometrics. Hansen, L., & Sargent, T. (1991). Rational expectations econometrics. In (p. 77-119).Westview Press, Inc. Hecq, A., Lieb, L., & Telg, S. (2015). Identification of mixed causal-noncausal models. How fat should we go? Working Paper RM/15/035, Maastricht University. Huang, J., & Pawitan, Y. (2000). Quasi-likelihood estimation of noninvertible moving average processes.Scandinavian Journal of Statistics,27, 689-710. Lanne, M., & Saikkonen, P. (2011). Noncausal autoregressions for economic time series.Journal of Time Series Econometrics,3. Lii, K.-S., & Rosenblatt, M. (1996). Maximum likelihood estimation for nongaussian nonminimum phase ARMA sequences.Statistica Sinica,6, 1-22. Lof, M. (2013). Noncausality and asset pricing. Studies in Nonlinear Dynamics &Econometrics,17(2), 211-220. Lof, M., & Nyberg, H. (2017). Noncausality and the commodity currency hypothesis.Energy Economics,65, 424-433. Lu, Q., Loewen, P., Gopaluni, R., Forbes, M., Backstroem, J., Dumont, G., & Davies,M. (2019). Identification of symmetric noncausal processes.Automatica,103, 515-530.23 Mineo, A. (2003). On the estimation of the structure parameter of a normal distribution of order p.Statistica,63(1), 109-122. Rosenblatt, M. (2000).Gaussian and non-gaussian linear time-series and random fields.Springer-Verlag. Wu, R., & Davis, R. (2010). Least absolute deviation estimation for general autoregressive moving average time series models.Journal of Time Series Analysis,31(2),98-112.24 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/109594 |