Logo
Munich Personal RePEc Archive

Forecasting internal migration in Russia using Google Trends: Evidence from Moscow and Saint Petersburg

Fantazzini, Dean and Pushchelenko, Julia and Mironenkov, Alexey and Kurbatskii, Alexey (2021): Forecasting internal migration in Russia using Google Trends: Evidence from Moscow and Saint Petersburg. Published in: Forecasting , Vol. 4, No. 3 (2021): pp. 774-804.

[img]
Preview
PDF
MPRA_paper_110452.pdf

Download (1MB) | Preview

Abstract

This paper examines the suitability of Google Trends data for the modeling and forecasting of interregional migration in Russia. Monthly migration data, search volume data, and macro variables are used with a set of univariate and multivariate models to study the migration data of the two Russian cities with the largest migration inflows: Moscow and Saint Petersburg. The empirical analysis does not provide evidence that the more people search online, the more likely they are to relocate to other regions. However, the inclusion of Google Trends data in a model improves the forecasting of the migration flows, because the forecasting errors are lower for models with internet search data than for models without them. These results also hold after a set of robustness checks that consider multivariate models able to deal with potential parameter instability and with a large number of regressors.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.