Fantazzini, Dean and Kurbatskii, Alexey and Mironenkov, Alexey and Lycheva, Maria (2022): Forecasting oil prices with penalized regressions, variance risk premia and Google data. Published in: Applied Econometrics
Preview |
PDF
Lycheva_Mironenkov_Kurbatskii_Fantazzini_Repec.pdf Download (1MB) | Preview |
Abstract
This paper investigates whether augmenting models with the variance risk premium (VRP) and Google search data improves the quality of the forecasts for real oil prices. We considered a time sample of monthly data from 2007 to 2019 that includes several episodes of high volatility in the oil market. Our evidence shows that penalized regressions provided the best forecasting performances across most of the forecasting horizons. Moreover, we found that models using the VRP as an additional predictor performed best for forecasts up to 6-12 months ahead forecasts, while models using Google data as an additional predictor performed better for longer-term forecasts up to 12-24 months ahead. However, we found that the differences in forecasting performances were not statistically different for most models, and only the Principal Component Regression (PCR) and the Partial least squares (PLS) regression were consistently excluded from the set of best forecasting models. These results also held after a set of robustness checks that considered model specifications using a wider set of influential variables, a Hierarchical Vector Auto-Regression model estimated with the LASSO, and a set of forecasting models using a simplified specification for Google Trends data.
Item Type: | MPRA Paper |
---|---|
Original Title: | Forecasting oil prices with penalized regressions, variance risk premia and Google data |
Language: | English |
Keywords: | Oil price; Variance Risk Premium; Google Trends; VAR; LASSO; Ridge; Elastic Net; Principal compo-nents, Partial least squares |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C55 - Large Data Sets: Modeling and Analysis C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q47 - Energy Forecasting |
Item ID: | 118239 |
Depositing User: | Prof. Dean Fantazzini |
Date Deposited: | 09 Aug 2023 13:34 |
Last Modified: | 09 Aug 2023 13:34 |
References: | Afkhami M., Cormack L. Ghoddusi H. (2017). Google search keywords that best predict energy price vola-tility. Energy Economics, 67, 17–27. DOI: 10.1016/j.eneco.2017.07.014. Alquist R., Kilian L., Vigfusson R. J. (2013). Forecasting the price of oil. In: Handbook of economic fore-casting, 2, 427–507. DOI: 10.1016/B978-0-444-53683-9.00008-6. Atmaz A. (2022). Stock return extrapolation, option prices, and variance risk premium. The Review of Fi-nancial Studies, 35(3), 1348–1393. DOI: 10.1093/rfs/hhab051. Bhattacharyya S. C. (2019). Energy economics: concepts, issues, markets and governance. Springer, London. DOI: 10.1007/978-1-4471-7468-4. Basistha A., Kurov A., Wolfe M. H. (2020). Volatility forecasting: the role of internet search activity and implied volatility. Journal of Risk Model Validation, 14(1), 35–63. DOI: 10.2139/ssrn.2812387. Baumeister C., Kilian L. (2012). Real-Time Forecasts of the Real Price of Oil. Journal of Business and Economic Statistics, 30, 326–336. DOI: 10.1080/07350015.2011.648859. Baumeister C., Kilian L. (2015). Forecasting the real price of oil in a changing world: a forecast combination approach. Journal of Business and Economic Statistics, 33(3), 338–351. DOI: 10.1080/07350015.2014.949342. Baumeister C., Hamilton J. D. (2019). Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. American Economic Review, 109(5), 1873–1910. DOI: 10.1257/aer.20151569. Bollerslev T., Tauchen G., Zhou H. (2009). Expected Stock Returns and Variance Risk Premia. Review Fi-nance Study, 22(11), 4463–4492. DOI: 10.1093/rfs/hhp008. Bollerslev T., Marrone J., Xu L., Zhou H. (2014). Stock return predictability and variance risk premia: sta-tistical inference and international evidence. Journal of Financial and Quantitative Analysis, 49(3), 633–661. DOI: 10.1017/S0022109014000453. Bazhenov T., Fantazzini D. (2019). Forecasting realized volatility of Russian stocks using Google Trends and implied volatility. Russian Journal of Industrial Economics, 12(1), 79–88. Chevallier J., Sévi B. (2014). A fear index to predict oil futures returns. Energy Studies Review, 20(3), 1–17. DOI: 10.15173/esr.v20i3.552. Clemen R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5 (4), 559–583. DOI: 10.1016/0169-2070(89)90012-5. Coleman L. (2011). Explaining crude oil prices using fundamental measures. Energy Policy, 40, 318–324. DOI: 10.1016/j.enpol.2011.10.012. Fantazzini D., Höök M., Angelantoni A. (2011). Global oil risks in the early 21st century. Energy Policy, 39(12), 7865–7873. DOI: 10.1016/j.enpol.2011.09.035. Fantazzini D. (2016). The oil price crash in 2014/15: Was there a (negative) financial bubble? Energy Policy, 96, 383–396. DOI: 10.1016/j.enpol.2016.06.020. Fantazzini D. Fomichev N. (2014). Forecasting the real price of oil using online search data. International Journal of Computational Economics and Econometrics, 4(1-2), 4–31. DOI: 10.1504/IJCEE.2014.060284. Fantazzini D., Shangina T. (2019). The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades. Applied Econometrics, 3 (55), 5–31. DOI: 10.244111/1993-7601-2019-10008. Fantazzini D., Toktamysova Z. (2015). Forecasting German car sales using Google data and multivariate models. International Journal of Production Economics, 170, 97–135. DOI: 10.1016/j.ijpe.2015.09.010. Gospodinov N., Herrera A.M., Pesavento E. (2013). Unit roots, cointegration, and pretesting in VAR models. Advances in Econometrics, 32, 81–115. DOI: 10.1108/S0731-9053(2013)0000031003. Hamilton J. (2008). Oil and the macroeconomy. In: The New Palgrave Dictionary of Economics, Palgrave MacMillan, London. DOI: 10.1057/978-1-349-95121-5_2119-1. Hamilton J. D. (2009). Understanding crude oil prices. Energy Journal, 30, 179–206. DOI: 10.5547/ISSN0195-6574-EJ-Vol30-No2-9. Hamilton J.D. (2011). Nonlinearities and the macroeconomic effects of oil prices. Macroeconomic dynamics, 15(S3), 364–378. DOI: 10.1017/S1365100511000307. Hamilton J.D. (2013). Historical oil shocks. In: The Routledge Handbook of Major Events in Economic His-tory, 258–284, Routledge Taylor and Francis Group, New York. Hastie T., Tibshirani R., Friedman J. H., Friedman J. H. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer, New York. DOI: 10.1007/978-0-387-21606-5. Hsiao C., Wan S. K. (2014). Is there an optimal forecast combination? Journal of Econometrics, 178, 294–309. DOI: 10.1016/j.jeconom.2013.11.003. Hyndman R. J., Athanasopoulos G. (2018). Forecasting: Principles and practice. OTexts. Kaufmann R. K., Dees S., Gasteuil A., Mann M. (2008). Oil prices: The role of refinery utilization, futures markets and non-linearities. Energy Economics, 30(5), 2609–2622. DOI: 10.1016/j.eneco.2008.04.010. Kilian L. (2008). The economic effects of energy price shocks. Journal of economic literature, 46(4), 871–909. DOI: 10.1257/jel.46.4.871. Kilian L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069. DOI: 10.1257/aer.99.3.1053. Kilian L. (2016). The impact of the shale oil revolution on US oil and gasoline prices. Review of Environ-mental Economics and Policy, 10(2), 185–205. DOI:10.1093/reep/rew001. Kilian L. Murphy D. (2014). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454–478. DOI: 10.1002/jae.2322. Kilian L., Zhou X. (2022). The econometrics of oil market VAR models. Advances in Econometrics, forth-coming. DOI: 10.1016/j.eneco.2022.105973. Londono J. M., Zhou H. (2017). Variance risk premiums and the forward premium puzzle. Journal of Finan-cial Economics, 124(2), 415–440. DOI: 10.1016/j.jfineco.2017.02.002. Miao H., Ramchander S., Wang T. Yang D. (2017). Influential factors in crude oil forecasting. Energy Eco-nomics, 68, 77–88. DOI: 10.1016/j.eneco.2017.09.010. Neely C. J., Rapach D. E., Tu J., Zhou G. (2014). Forecasting the equity risk premium: the role of technical indicators. Management science, 60(7), 1772–1791. DOI: 10.1287/mnsc.2013.1838. Nicholson W. B., Wilms I., Bien J., Matteson D. S. (2020). High Dimensional Forecasting via Interpretable Vector Autoregression. Journal of Machine Learning Research, 21(166), 1–52. Ornelas J. R. H. (2019). Expected currency returns and volatility risk premia. The North American Journal of Economics and Finance, 49, 206–234. DOI: 10.1016/j.najef.2019.03.015. Ornelas J. R. H., Mauad R. B. (2019). Volatility risk premia and future commodity returns. Journal of Inter-national Money and Finance, 96, 341–360. DOI: 10.1016/j.jimonfin.2017.07.008. Qadan M., Nama H. (2018). Investor sentiment and the price of oil. Energy Economics, 69, 42–58. DOI: 10.1016/j.eneco.2017.10.035. Quayyoum S., Khan M. H., Shah S. Z., Simonetti B., Matarazzo M. (2019). Seasonality in crude oil returns. Soft Computing, 24, 13547–13556. DOI: 10.1007/s00500-019-04329-0. Schwarz P. (2017). Energy and sustainability. In: The Proceedings of Energy and sustainability, WIT Press. DOI: 10.4324/9781315114064-15. Timmermann A. (2006). Forecast combinations. Handbook of Economic Forecasting, 1, 135–196. DOI: 10.2139/ssrn.1609530. Vinzi V. E., Chin W. W., Henseler J., Wang H. (2010). Handbook of partial least squares. Springer, Berlin. DOI: 10.1007/978-3-540-32827-8. Wilms I., Basu S., Bien J., Matteson D. S. (2021). Sparse identification and estimation of large-scale vector autoregressive moving averages. Journal of the American Statistical Association, 1–12. DOI: 10.1080/01621459.2021.1942013. Zhang Y., Ma F., Wang Y. (2019). Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? Journal of Empirical Finance, 54, 97–117. DOI: 10.1016/j.jempfin.2019.08.007. Zou H., Hastie T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Sta-tistical Society: Series B (Statistical Methodology), 67(2), 301–320. DOI: 10.1111/j.1467-9868.2005.00503.x. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118239 |