Cajas Guijarro, John (2023): An Extended Goodwin Model with Endogenous Technical Change: Theory and Simulation for the US Economy (1960-2019).
Preview |
PDF
MPRA_paper_118878.pdf Download (1MB) | Preview |
Abstract
This paper extends the two-dimensional Goodwin model of distributive cycles by incorporating endogenous technical change, inspired on some insights originally formulated by Marx. We introduce a three-dimensional dynamical system, expanding the model to include wage share, employment rate, and capital-output ratio as state variables. Theoretical analysis demonstrates an economically meaningful and locally stable equilibrium point, and the Hopf bifurcation theorem reveals the emergence of stable limit cycles as the mechanization-productivity elasticity surpasses a critical value. Econometric estimation of model parameters using ARDL bounds cointegration tests is performed for the US economy from 1965 to 2019. Simulations show damped oscillations, limit cycles, and unstable oscillations, contributing to the understanding of complex capitalist dynamics.
Item Type: | MPRA Paper |
---|---|
Original Title: | An Extended Goodwin Model with Endogenous Technical Change: Theory and Simulation for the US Economy (1960-2019) |
Language: | English |
Keywords: | Goodwin model, endogenous technical change, Hopf bifurcation, ARDL, numerical simulations |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis E - Macroeconomics and Monetary Economics > E1 - General Aggregative Models > E11 - Marxian ; Sraffian ; Kaleckian E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E32 - Business Fluctuations ; Cycles O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O41 - One, Two, and Multisector Growth Models |
Item ID: | 118878 |
Depositing User: | John Cajas Guijarro |
Date Deposited: | 27 Oct 2023 04:22 |
Last Modified: | 27 Oct 2023 04:22 |
References: | Araujo, R. A., Dávila-Fernández, M. J., & Moreira, H. N. (2019). Some new insights on the empirics of Goodwin’s growth-cycle model. Structural Change and Economic Dynamics, 51, 42–54. https://doi.org/10.1016/j.strueco.2019.07.007 Barrales-Ruiz, J., Mendieta-Muñoz, I., Rada, C., Tavani, D., & Von Arnim, R. (2022). The distributive cycle: Evidence and current debates. Journal of Economic Surveys, 36(2), 468–503. https://doi.org/10.1111/joes.12432 Cajas Guijarro, J. (2023). Poder, intensidad del trabajo y crisis en un modelo marxista de ciclos endógenos. El Trimestre Económico, 90(358), 365–407. https://doi.org/10.20430/ete.v90i358.1574 Cajas Guijarro, J., & Vera, L. (2022). The macrodynamics of an endogenous business cycle model of marxist inspiration. Structural Change and Economic Dynamics, 62, 566–585. https://doi.org/10.1016/j.strueco.2022.08.002 Cámara Izquierdo, S. (2022). The general law of capitalist accumulation and a theory of labour-shortage business cycles. The General Law of Capitalist Accumulation in Latin America and Beyond: Actuality and Pertinence, 55. Desai, M. (1984). An econometric model of the share of wages in national income: UK 1855–1965. Nonlinear Models of Fluctuating Growth: An International Symposium Siena, Italy, March 24–27, 1983, 253–277. https://doi.org/10.1007/978-3-642-45572-8_15 Dutt, A. K. (2013). Endogenous technological change in classical–Marxian models of growth and distribution. Social Fairness and Economics, 281–302. Eagly, R. V. (1972). A macro model of the endogenous business cycle in Marxist analysis. Journal of Political Economy, 80(3, Part 1), 523–539. https://doi.org/10.1086/259903 Foley, D. K. (2003). Endogenous technical change with externalities in a classical growth model. Journal of Economic Behavior & Organization, 52(2), 167–189. https://doi.org/10.1016/S0167-2681(03)00020-9 Goodwin, R. (1967). A Growth Cycle. In C. H. Feinstein (Ed.), Socialism, Capitalism and Economic Growth (pp. 54–58). Cambridge University Press. Grasselli, M. R., & Maheshwari, A. (2018). Testing a Goodwin model with general capital accumulation rate. Metroeconomica, 69(3), 619–643. https://doi.org/10.1111/meca.12204 Grassetti, F., Guzowska, M., & Michetti, E. (2020). A dynamically consistent discretization method for Goodwin model. Chaos, Solitons & Fractals, 130, 109420. https://doi.org/10.1016/j.chaos.2019.109420 Harris, D. J. (1983). Accumulation of capital and the rate of profit in Marxian theory. Cambridge Journal of Economics, 7(3–4), 311–330. https://doi.org/10.1093/cje/7.3-4.311 Harvie, D. (2000). Testing Goodwin: Growth cycles in ten OECD countries. Cambridge Journal of Economics, 24(3), 349–376. https://doi.org/10.1093/cje/24.3.349 Julius, A. J. (2005). Steady-state growth and distribution with an endogenous direction of technical change. Metroeconomica, 56(1), 101–125. https://doi.org/10.1111/j.1467-999X.2005.00209.x Liu, W.-M. (1994). Criterion of Hopf bifurcations without using eigenvalues. Journal of Mathematical Analysis and Applications, 182(1), 250–256. https://doi.org/10.1006/jmaa.1994.1079 Lotka, A. J. (1910). Contribution to the Theory of Periodic Reactions. The Journal of Physical Chemistry. https://doi.org/10.1021/j150111a004 Marx, K. (1975). Capital. A Critique of Political Economy. Book 1. The Process of Production of Capital. In Marx-Engells collected works (Vol. 35). International Publishers. (Original work published 1867) Mehrling, P. G. (1986). A Classical Model of the Class Struggle: A Game-Theoretic Approach. Journal of Political Economy, 94(6), 1280–1303. https://doi.org/10.1086/261433 Natsiopoulos, K., & Tzeremes, N. G. (2022). ARDL bounds test for cointegration: Replicating the Pesaran et al.(2001) results for the UK earnings equation using R. Journal of Applied Econometrics, 37(5), 1079–1090. https://doi.org/10.1002/jae.2919 Nikolaos, C., Persefoni, T., & Tsoulfidis, L. (2022). A model of economic growth and long cycles. Review of Radical Political Economics, 54(3), 351–382. https://doi.org/10.1177/04866134221096763 Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. https://doi.org/10.1002/jae.616 Shah, A., & Desai, M. (1981). Growth cycles with induced technical change. The Economic Journal, 91(364), 1006–1010. https://doi.org/10.2307/2232506 Solow, R. M. (1990). Goodwin’s growth cycle: Reminiscence and rumination. In Nonlinear and multisectoral macrodynamics (pp. 31–41). Springer. https://doi.org/10.1007/978-1-349-10612-7_4 Sweezy, P. (1964). The Theory of Capitalist Development. Monthly Press. Volterra, V. (1927). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi (Vol. 2). Societá anonima tipografica" Leonardo da Vinci". |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118878 |