Logo
Munich Personal RePEc Archive

A Pareto-metaheuristic for a bi-objective winner determination problem in a combinatorial reverse auction

Buer, Tobias and Kopfer, Herbert (2012): A Pareto-metaheuristic for a bi-objective winner determination problem in a combinatorial reverse auction.

[thumbnail of MPRA_paper_36062.pdf]
Preview
PDF
MPRA_paper_36062.pdf

Download (494kB) | Preview

Abstract

The bi-objective winner determination problem (2WDP-SC) of a combinatorial procurement auction for transport contracts comes up to a multi-criteria set covering problem. We are given a set B of bundle bids. A bundle bid b in B consists of a bidding carrier c_b, a bid price p_b, and a set tau_b of transport contracts which is a subset of the set T of tendered transport contracts. Additionally, the transport quality q_t,c_b is given which is expected to be realized when a transport contract t is executed by a carrier c_b. The task of the auctioneer is to find a set X of winning bids (X is subset of B), such that each transport contract is part of at least one winning bid, the total procurement costs are minimized, and the total transport quality is maximized. This article presents a metaheuristic approach for the 2WDP-SC which integrates the greedy randomized adaptive search procedure, large neighborhood search, and self-adaptive parameter setting in order to find a competitive set of non-dominated solutions. The procedure outperforms existing heuristics. Computational experiments performed on a set of benchmark instances show that, for small instances, the presented procedure is the sole approach that succeeds to find all Pareto-optimal solutions. For each of the large benchmark instances, according to common multi-criteria quality indicators of the literature, it attains new best-known solution sets.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.