Logo
Munich Personal RePEc Archive

Estimation and Inference in Univariate and Multivariate Log-GARCH-X Models When the Conditional Density is Unknown

Sucarrat, Genaro and Grønneberg, Steffen and Escribano, Alvaro (2013): Estimation and Inference in Univariate and Multivariate Log-GARCH-X Models When the Conditional Density is Unknown.

Warning
There is a more recent version of this item available.
[thumbnail of loggarch.pdf]
Preview
PDF
loggarch.pdf

Download (704kB) | Preview

Abstract

Exponential models of Autoregressive Conditional Heteroscedasticity (ARCH) enable richer dynamics (e.g. contrarian or cyclical), provide greater robustness to jumps and outliers, and guarantee the positivity of volatility. The latter is not guaranteed in ordinary ARCH models, in particular when additional exogenous or predetermined variables ("X") are included in the volatility specification. Here, we propose estimation and inference methods for univariate and multivariate Generalised log-ARCH-X (i.e. log-GARCH-X) models when the conditional density is not known via (V)ARMA-X representations. The multivariate specification allows for volatility feedback across equations, and time-varying correlations can be fitted in a subsequent step. Finally, our empirical applications on electricity prices show that the model-class is particularly useful when the X-vector is high-dimensional.

Available Versions of this Item

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.