Fajardo, José and Corcuera, José Manuel and Menouken Pamen, Olivier (2016): On the optimal investment.
Preview |
PDF
MPRA_paper_71901.pdf Download (368kB) | Preview |
Abstract
In 1988 Dybvig introduced the payoff distribution pricing model (PDPM) as an alternative to the capital asset pricing model (CAPM). Under this new paradigm agents preferences depend on the probability distribution of the payoff and for the same distribution agents prefer the payoff that requires less investment. In this context he gave the notion of efficient payoff. Both approaches run parallel to the theory of choice of von Neumann -Morgenstern (1947), known as the Expected Utility Theory and posterior axiomatic alternatives. In this paper we consider the notion of optimal payoff as that maximizing the terminal position for a chosen preference functional and we investigate the relationship between both concepts, optimal and efficient payoffs, as well as the behavior of the efficient payoffs under different market dynamics. We also show that path-dependent options can be efficient in some simple models.
Item Type: | MPRA Paper |
---|---|
Original Title: | On the optimal investment |
English Title: | On the optimal investment |
Language: | English |
Keywords: | Expected Utility, Prospect Theory, Risk Aversion, Law invariant preferences, Growth Optimal Portfolio, Portfolio Numeraire. |
Subjects: | D - Microeconomics > D0 - General > D03 - Behavioral Microeconomics: Underlying Principles D - Microeconomics > D1 - Household Behavior and Family Economics > D11 - Consumer Economics: Theory G - Financial Economics > G0 - General > G02 - Behavioral Finance: Underlying Principles G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions |
Item ID: | 71901 |
Depositing User: | José S Fajardo |
Date Deposited: | 10 Jun 2016 08:14 |
Last Modified: | 04 Oct 2019 16:45 |
References: | Becherer, D. (2001). The numeraire portfolio for unbounded semimartingales. Finance and Stochastics, 5(3), 327-341. Bernard, C., Boyle, P. P., & Vanduffel, S. (2014a). Explicit representation of cost-effcient strategies. Finance, 35(2), 5-55. Bernard, C., Rüschendorf, L., & Vanduffel, S. (2014b). Optimal claims with fixed payoff structure. Journal of Applied Probability, 51, 175-188. Bernard, C., Moraux, F., Rüschendorf, L., & Vanduffel, S. (2015a). Optimal payoffs under statedependent preferences. Quantitative Finance, 15(7), 1157-1173. Bernard, C., Chen, J. S., & Vanduffel, S. (2015). Rationalizing investors' choices. Journal of Mathematical Economics, 59, 10-23. Carlier, G., & Dana, R. A. (2011). Optimal demand for contingent claims when agents have law invariant utilities. Mathematical Finance, 21(2), 169-201. Corcuera, J. M., Guerra, J., Nualart, D., & Schoutens, W. (2006). Optimal investment in a Lévy market. Applied Mathematics and Optimization, 53(3), 279-309. Dybvig, P. H. (1988a). Distributional analysis of portfolio choice. Journal of Business, 369-393. Dybvig, P. H. (1988b). Inefficient dynamic portfolio strategies or how to throw away a million dollars in the stock market. Review of Financial studies, 1(1), 67-88. Fajardo Barbachan, J. (2003). Optimal consumption and investment with Lévy processes. Revista Brasileira de Economia, 57(4), 825-848. Föllmer, H., & Schied, A. (2011). Stochastic finance: an introduction in discrete time.Walter de Gruyter. Fréchet, M. (1935). Généralisation du théoreme des probabilités totales. Fundamenta mathematicae, 1(25), 379-387. Von Hammerstein, E. A., Lütkebohmert, E., Rüschendorf, L., & Wolf, V. (2014). Optimality of payoffs in Lévy models. International Journal of Theoretical and Applied Finance, 17(06). Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291. Kassberger, S., & Liebmann, T. (2012). When are path-dependent payoffs suboptimal?. Journal of Banking & Finance, 36(5), 1304-1310. Lehmann, E. L. (1966). Some concepts of dependence. The Annals of Mathematical Statistics, 1137-1153. von Neumann, J., & Morgenstern, O. (1947). Theory of Games and Economic Behavior. 2nd. Ed. Princenton University Press, Princenton NJ. Platen, E. (2002). Arbitrage in continuous complete markets. Advances in Applied Probability, 540-558. Platen, E., & Heath, D. (2006). A benchmark approach to quantitative finance. Springer Science & Business Media. Schweizer, M. (1999). A minimality property of the minimal martingale measure. Statistics & probability letters, 42(1), 27-31. Takahashi, A., & Yamamoto, K. (2013). Generating a target payoff distribution with the cheapest dynamic portfolio: an application to hedge fund replication. Quantitative Finance, 13(10), 1559-1573. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5(4), 297-323. Vanduffel, S., Chernih, A., Maj, M., & Schoutens, W. (2009). A note on the suboptimality of pathdependent pay-offs in Lévy markets. Applied Mathematical Finance, 16(4), 315-330. Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica: Journal of the Econometric Society, 95-115. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/71901 |