Munich Personal RePEc Archive

Bayesian Inference in Spatial Sample Selection Models

Dogan, Osman and Taspinar, Suleyman (2016): Bayesian Inference in Spatial Sample Selection Models. Forthcoming in: Oxford Bulletin of Economics and Statistics

[img]
Preview
PDF
MPRA_paper_82829.pdf

Download (2MB) | Preview

Abstract

In this study, we consider Bayesian methods for the estimation of a sample selection model with spatially correlated disturbance terms. We design a set of Markov chain Monte Carlo (MCMC) algorithms based on the method of data augmentation. The natural parameterization for the covariance structure of our model involves an unidentified parameter that complicates posterior analysis. The unidentified parameter -- the variance of the disturbance term in the selection equation -- is handled in different ways in these algorithms to achieve identification for other parameters. The Bayesian estimator based on these algorithms can account for the selection bias and the full covariance structure implied by the spatial correlation. We illustrate the implementation of these algorithms through a simulation study.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.