Dogan, Osman and Taspinar, Suleyman (2016): Bayesian Inference in Spatial Sample Selection Models. Forthcoming in: Oxford Bulletin of Economics and Statistics
Preview |
PDF
MPRA_paper_82829.pdf Download (2MB) | Preview |
Abstract
In this study, we consider Bayesian methods for the estimation of a sample selection model with spatially correlated disturbance terms. We design a set of Markov chain Monte Carlo (MCMC) algorithms based on the method of data augmentation. The natural parameterization for the covariance structure of our model involves an unidentified parameter that complicates posterior analysis. The unidentified parameter -- the variance of the disturbance term in the selection equation -- is handled in different ways in these algorithms to achieve identification for other parameters. The Bayesian estimator based on these algorithms can account for the selection bias and the full covariance structure implied by the spatial correlation. We illustrate the implementation of these algorithms through a simulation study.
Item Type: | MPRA Paper |
---|---|
Original Title: | Bayesian Inference in Spatial Sample Selection Models |
Language: | English |
Keywords: | Spatial dependence, Spatial sample selection model, Bayesian analysis, Data augmentation |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C31 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions ; Social Interaction Models |
Item ID: | 82829 |
Depositing User: | Suleyman Taspinar |
Date Deposited: | 29 Nov 2017 05:25 |
Last Modified: | 28 Sep 2019 10:30 |
References: | Albert, James H. and Siddhartha Chib (1993). Bayesian Analysis of Binary and Polychotomous Response Data. English. In: Journal of the American Statistical Association 88.422. Anselin, Luc (2007). Spatial Econometrics. In: Palgrave Handbook of Econometrics: Volume 1, Econometric Theory. Ed. by Kerry Patterson and Terence C. Mills. Palgrave Macmillan. Beron, Kurt J. and Wim P.M. Vijverberg (2004). Probit in a Spatial Context: A Monte Carlo Analysis. In: Advances in Spatial Econometrics. Ed. by Luc Anselin, RaymondJ.G.M. Florax, and SergioJ. Rey. Advances in Spatial Science. Springer Berlin Heidelberg, pp. 169 - 195. Buchel, Felix and Maarten van Ham (2003). Overeducation, regional labor markets, and spatial exibility. In: Journal of Urban Economics 53.3, pp. 482 - 493. Burgette, Lane F. and Erik V. Nordheim (2012). The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model. In: Journal of Business & Economic Statistics 30.3, pp. 404 - 410. Chib, Siddhartha (2001). Chapter 57 Markov Chain Monte Carlo Methods: Computation and Inference. In: Handbook of Econometrics. Ed. by J.J. Heckman and E. Leamer. Vol. 5. Handbook of Econometrics. Elsevier, pp. 3569 - 3649. Chib, Siddhartha, Edward Greenberg, and Ivan Jeliazkov (2009). Estimation of Semiparametric Models in the Presence of Endogeneity and Sample Selection. In: Journal of Computational and Graphical Statistics 18.2, pp. 321 - 348. Chopin, Nicolas (2011). Fast simulation of truncated Gaussian distributions. In: Statistics and Computing 21.2, pp. 275 - 288. Ding, Peng (2014). Bayesian robust inference of sample selection using selection-t models. In: Journal of Multivariate Analysis 124.0, pp. 451 - 464. Dogan, Osman and Suleyman Taspnar (2014). Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach. In: Regional Science and Urban Economics 45.0, pp. 1 - 21. Flores-Lagunes, Alfonso and Kurt Erik Schnier (2012). Estimation of sample selection models with spatial dependence. In: Journal of Applied Econometrics 27.2, pp. 173 - 204. Gelman, A. and D.B. Rubin (1992). Inference from iterative simulation using multiple sequences. In: Statistical Science 7, pp. 457 - 511. Gelman, A. et al. (2003). Bayesian Data Analysis, Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis. Geweke, John (1991). Effcient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Ed. by E. M. Keramidas. Interface Foundation of North America, Inc., pp. 571 - 578. Geweke, John (1992). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments . In: Bayesian Statistics 4. Ed. by A. P. Dawid J. M. Bernardo J. O. Berger and A. F. M. Smith. Oxford University Press, pp. 169 - 193. Geweke, John (2005). Contemporary Bayesian Econometrics and Statistics. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc. Gilks, Walter R., Sylvia Richardson, and Gilks W.R. (1995). Introducing Markov Chain Monte Carlo. In: Markov Chain Monte Carlo in Practice. Ed. by W.R. Gilks, S. Richardson, and D. Spiegelhalter. Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis, pp. 1 - 16. Heckman, James J. (1979). Sample Selection Bias as a Specification Error. In: Econometrica 47.1, pp. 153 - 161. Heckman, James J. (1990). Varieties of Selection Bias. In: The American Economic Review 80.2, pp. 313 - 318. Imai, Kosuke and David A. van Dyk (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation. In: Journal of Econometrics 124.2, pp. 311 - 334. Kelejian, Harry H. and Ingmar R. Prucha (1998). A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. In: Journal of Real Estate Finance and Economics 17.1, pp. 1899 - 1926. Kelejian, Harry H. and Ingmar R. Prucha (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. In: Journal of Econometrics 157, pp. 53 - 67. Koop, Gary, Dale J. Poirier, and Justin L. Tobias (2007). Bayesian Econometric Methods. New York, USA: Cambridge University Press. Lee, Lung-fei (1978). Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited Dependent Variables. In: International Economic Review 19.2, pp. 415 - 433. Lee, Lung-fei (1994). Semiparametric two-stage estimation of sample selection models subject to Tobit-type selection rules. In: Journal of Econometrics 61.2. Lee, Lung-fei, Xiaodong Liu, and Xu Lin (2010). Specification and estimation of social interaction models with network structures. In: The Econometrics Journal 13, pp. 145 - 176. Lee, Myoung-Jae (2003). Exclusion Bias in Sample-Selection Model Estimators. In: Japanese Economic Review 54.2, pp. 229 - 236. LeSage, James and Robert K. Pace (2009). Introduction to Spatial Econometrics (Statistics: A Series of Textbooks and Monographs. London: Chapman and Hall/CRC. Leung, Siu Fai and Shihti Yu (1996). On the choice between sample selection and two-part models. In: Journal of Econometrics 72.1, pp. 197 - 229. Li, Kai (1998). Bayesian inference in a simultaneous equation model with limited dependent variables. In: Journal of Econometrics 85.2, pp. 387 - 400. Liu, Jun S. and Ying Nian Wu (1999). Parameter Expansion for Data Augmentation". In: Journal of the American Statistical Association 94.448, pp. 1264 - 1274. Liu, Xiaodong and Lung-fei Lee (2010). GMM estimation of social interaction models with centrality. In: Journal of Econometrics 159.1, pp. 99 - 115. McCulloch, Robert E., Nicholas G. Polson, and Peter E. Rossi (2000). A Bayesian analysis of the multinomial probit model with fully identified parameters. In: Journal of Econometrics 99.1,pp. 173 - 193. McMillen, Daniel P. (1992). Probit with Spatial Autocorrelation. In: Journal of Regional Science 32.3, pp. 335 - 348. McMillen, Daniel P. (1995). Selection bias in spatial econometrics models. In: Journal of Regional Science 35.3. Meng, X-L and David A. van Dyk (1999). Seeking effcient data augmentation schemes via conditional and marginal augmentation. In: Biometrika 86.2, pp. 301{320. Newey, Whitney K. (2009). Two-step series estimation of sample selection models. In: The Econometrics Journal 12. Nobile, Agostino (2000). Comment: Bayesian multinomial probit models with a normalization constraint. In: Journal of Econometrics 99.2, pp. 335 - 345. Olsen, Randall J. (1980). A Least Squares Correction for Selectivity Bias. In: Econometrica 48.7, pp. 1815 - 1820. Pace, Robert K., James P. LeSage, and Shuang Zhu (2012). Spatial Dependence in Regressors and its Effect on Performance of Likelihood-Based and Instrumental Variable Estimators. In: ed. by Daniel Millimet Dek Terrell. 30th Anniversary Edition (Advances in Econometrics, Volume 30). Emerald Group Publishing Limited, pp. 257 - 295. Pinkse, Joris and Margaret E. Slade (1998). Contracting in space: An application of spatial statistics to discrete-choice models. In: Journal of Econometrics 85.1, pp. 125 -154. Rabovic, Renata and Pavel Cizek (2016). Estimation of Spatial Sample Selection Models: Partial Maximum Likelihood Approach. CentER Discussion Paper Series. Talhouk, Aline, Arnaud Doucet, and Kevin Murphy (2012). Effcient Bayesian Inference for Multivariate Probit Models With Sparse Inverse Correlation Matrices. In: Journal of Computational and Graphical Statistics 21.3, pp. 739 - 757. van Dyk, David A. and Xiao-Li Meng (2001). The Art of Data Augmentation. In: Journal of Computational and Graphical Statistics 10.1, pp. 1 - 50. van Hasselt, Martijn (2005). Bayesian Sampling Algorithms for the Sample Selection and Two-Part Models. Computing in Economics and Finance 2005.241. Society for Computational Economics. van Hasselt, Martijn (2011). \Bayesian inference in a sample selection model. In: Journal of Econometrics 165.2, pp. 221 - 232. Wang, Honglin, Emma M. Iglesias, and Jeffrey M. Wooldridge (2013). Partial maximum likelihood estimation of spatial probit models. In: Journal of Econometrics 172.1, pp. 77 - 89. Ward, Patrick S., Raymond J. G. M. Florax, and Alfonso Flores-Lagunes (2014). Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model. In: European Review of Agricultural Economics 41.2, pp. 199 - 226. Wooldridge, Jeffrey M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/82829 |