Fingleton, Bernard (2018): Exploring Brexit with dynamic spatial panel models : some possible outcomes for employment across the EU regions.
Preview |
PDF
MPRA_paper_86553.pdf Download (603kB) | Preview |
Abstract
Starting with a reduced form derived from standard urban economics theory, this paper estimates the possible job-shortfall across UK and EU regions using a time-space dynamic panel data model with a Spatial Moving Average Random Effects (SMA-RE) structure of the disturbances. The paper provides a logical rational for the presence of spatial and temporal dependencies involving the endogenous variable, leading to estimates based on a dynamic spatial Generalized Moments (GM) estimator proposed by Baltagi, Fingleton and Pirotte (2018). Given state-of-the art interregional trade estimates, the simulations are based on a linear predictor which utilizes different regional interdependency matrices according to assumptions about interregional trade post-Brexit.
Item Type: | MPRA Paper |
---|---|
Original Title: | Exploring Brexit with dynamic spatial panel models : some possible outcomes for employment across the EU regions |
Language: | English |
Keywords: | Brexit; Interregional trade; Urban economics theory; Panel data; Spatial lag; Spatio-temporal lag; Dynamic; Spatial moving average; Prediction; Simulation. |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C33 - Panel Data Models ; Spatio-temporal Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E2 - Consumption, Saving, Production, Investment, Labor Markets, and Informal Economy > E27 - Forecasting and Simulation: Models and Applications F - International Economics > F1 - Trade > F10 - General J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J21 - Labor Force and Employment, Size, and Structure R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity |
Item ID: | 86553 |
Depositing User: | Bernard Fingleton |
Date Deposited: | 10 May 2018 13:19 |
Last Modified: | 27 Sep 2019 02:46 |
References: | Anselin, L. (1988). Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Dordrecht. Arellano, M. and Bond, S. (1991). `Some tests of specification for panel data: Monte Carlo evidence and an application to employment', Review of Economic Studies, Vol. 58, pp. 277-297. Baltagi, B.H., Fingleton, B. and Pirotte, A. (2014). `Estimating and Forecasting with a Dynamic Spatial Panel Model', Oxford Bulletin of Economics and Statistics Vol. 76, pp. 112-138. Baltagi, B., Fingleton, B., Pirotte, A. (2018). `A Time-Space Dynamic Panel Data Model with Spatial Moving Average Errors', forthcoming Regional Science and Urban Economics Bond, S. (2002). `Dynamic panel data models: a guide to micro data methods and practice', Portuguese Economic Journal, Vol. 1, pp. 141-162. Bouayad-Agha, S. and Védrine, L. (2010). `Estimation strategies for a spatial dynamic panel using GMM. A new approach to the convergence issue of European regions', Spatial Economic Analysis, Vol. 5, pp. 205-227. Chamberlain, G. (1984). `Panel data', in Griliches Z. and Intriligator ,M. (eds), The Handbook of Econometrics, Chapter 22, North-Holland, Amsterdam, pp. 1247--1318. Chow, G., Lin, A.-I. (1971). `Best linear unbiased interpolation, distribution and extrapolation of time series by related series', The Review of Economics and Statistics, Vol. 53, pp 372--375. Debarsy, N., Ertur, C. and LeSage, J.P. (2012). `Interpreting dynamic space-time panel data models', Statistical Methodology, Vol. 9, pp. 158- 171. Derbyshire, J., Gardiner, B. and Waights, S. (2010). `Estimating the capital stock for the NUTS 2 regions of the EU-27'. European Union Working Papers no. 01/2011. Doran. J., Fingleton, B. (2014). `Economic Shocks and Growth: Spatio-temporal Perspectives on Europe's Economies in a Time of Crisis', Papers in Regional Science, Vol. 93, issue S1, pp S137-S165. Elhorst, J. P. (2014). Spatial Econometrics : from cross-sectional data to spatial panels. Springer Elhorst, J.P. (2001). `Dynamic models in space and time', Geographical Analysis, Vol. 33, pp. 119-140. Fingleton, B. (2008). `A generalized method of moments estimator for a spatial panel model with an endogenous spatial lag and spatial moving average errors', Spatial Economic Analysis, Vol. 3, pp. 28-44. Fingleton, B., Le Gallo, J., Pirotte, A. (2017). `A multi-dimensional Spatial Lag Panel Data Model with spatial moving average nested random effects errors', Empirical Economics DOI 10.1007/s00181-017-1410-7. Gianelle, C., Goenaga, X., González, I., Thissen, M. (2014). `Smart specialisation in the tangled web of European inter-regional trade', S3 Working Paper Series No. 05/2014, JRC-IPTS, Sevilla. Kelejian, H.H., Prucha, I.R. (1999). `A generalized moments estimator for the autoregressive parameter in a spatial model', International Economic Review, Vol. 40, pp. 509-533. Kapoor, M., Kelejian, H. H., Prucha, I. R. (2007). `Panel data models with spatially correlated error components', Journal of Econometrics, Vol. 140, pp. 97--130. LeSage, J.P., Pace, R.K. (2009). Introduction to Spatial Econometrics, Chapman & Hall/CRC Press, Boca Raton. Parent, O., LeSage, J.P. (2011). `A space-time filter for panel data models containing random effects', Computational Statistics and Data Analysis, Vol. 55, pp. 475-490. Pace, R. K., LeSage, J. P., Zhu, S. (2012). `Spatial Dependence in Regressors', In: Terrell D, Millimet D (eds) Advances in econometrics volume 30, Thomas B. Fomby, R. Carter Hill, Ivan Jeliazkov, Juan Carlos Escanciano and Eric Hillebrand. Emerald Group Publishing Limited, Bingley, pp 257--295. Pesaran, M. H. (1990). `Econometrics', In The New Palgrave: Econometrics, ed. by J. Eatwell, M. Milgate, and P. Newman, 25-6. New York: W.W. Norton and Company. Pesaran, M. H. (2015). Time Series and Panel Data Econometrics, Oxford University Press, Oxford. Polasek, W., Verduras, C., Sellner, R. (2010). `Bayesian methods for completing data in spatial models', Review of Economic Analysis, Vol. 2, pp. 194-214. Sevestre, P., Trognon, A. (1996). `Dynamic linear models', in Màtyàs L. and Sevestre P. (eds)., The Econometrics of Panel Data: A Handbook of Theory with Applications, Chapter 7, Kluwer Academic Publishers, Dordrecht, pp. 121-144. Simini, F., González, M.C., Maritan, A., Barabási, A. (2012). `A universal model for mobility and migration patterns', Nature, Vol. 484, pp. 96-100. Thissen M., van Oort, F., Diodato,D., Ruijs, A. (2013). Regional Competitiveness and Smart Specialization in Europe: Place-based Development in International Economic Networks. Cheltenham, UK: Edward Elgar Publishing. Thissen M., D. Diodato, & F. van Oort (2013a), Integration and Convergence in Regional Europe: European Regional Trade Flows from 2000 to 2010, PBL publication number: 1036, PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven. Thissen M., D. Diodato, & F. van Oort (2013b), Integrated Regional Europe: European Regional Trade Flows in 2000, PBL publication number: 1035, PBL Netherlands Environmental Assessment Agency, The Hague/Bilthoven. Vidoli, F., Mazziotta, C. (2010). `Spatial composite and disaggregate indicators: Chow--Lin methods and applications', Proceedings of the 45th Scientific Meeting of the Italian Statistical Society, Padua. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/86553 |
Available Versions of this Item
- Exploring Brexit with dynamic spatial panel models : some possible outcomes for employment across the EU regions. (deposited 10 May 2018 13:19) [Currently Displayed]