Otero, Karina V. (2016): Intensity of default in sovereign bonds: Estimation of an unobservable process.
Preview |
PDF
MPRA_paper_86782.pdf Download (554kB) | Preview |
Abstract
This paper proposes a new approach to estimate general stationary diffusion processes that describe the evolution of unobserved arrival rates of credit events on sovereign bonds, allowing for arbitrary parametric drift and diffusion specifications. The solutions and transition processes for stationary diffusions are generally unknown in closed form and therefore standard maximum likelihood methods do not apply. Moreover, the arrival rates of credit events on sovereign bonds are unobservable and a direct nonparametric estimation does not work. This paper overcomes these challenges combining a semi-nonparametric estimator in the framework of the Efficient Method of Moments, Gallant and Tauchen (1996), and a reduced-form model for pricing sovereign bonds and credit default swaps. The application for Brazil sovereign assets explores the performance of the model under different specifications of the intensity process.
Item Type: | MPRA Paper |
---|---|
Original Title: | Intensity of default in sovereign bonds: Estimation of an unobservable process |
Language: | English |
Keywords: | Efficient Method of Moments (EMM), semi-nonparametric (SNP) econometrics, Hermite, latent variables, estimation of stochastic differential equations, estimation of diffusions, asset pricing, numerical methods for partial differential equations, credit risk, cox process, credit derivatives, credit default swaps (CDS). |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G13 - Contingent Pricing ; Futures Pricing |
Item ID: | 86782 |
Depositing User: | Ph.D. Karina V. Otero |
Date Deposited: | 18 May 2018 18:31 |
Last Modified: | 26 Sep 2019 17:38 |
References: | Ahn, D. H., and B. Gao (1999): “A parametric nonlinear model of term structure dynamics,” Review of Financial Studies, 12(4), 721–762. A¨ıt-sahalia, Y. (2002): “Telling From Discrete Data Whether the Underlying Continuous Time Model is a Diffusion,” Journal of Finance, pp. 2075–2112. A¨ıt-Sahalia, Y. (2008): “Closed-Form Likelihood Expansions for Multivariate Diffusions,” The Annals of Statistics, 36(2), 906–937. A¨ıt-Sahalia, Y., and R. L. Kimmel (2007): “Maximum Likelihood Estimation of Stochastic Volatility Models,” Journal of Financial Economics , 83(2), 413–452. Berndt, A., R. Douglas, D. Duffie, M. Ferguson, and D. Schranz (2008): “Measuring default risk premia from default swap rates and EDFs,” Tepper School of Business , p. 49. Burrage, K., and E. Platen (1994): “Runge-Kutta methods for stochastic differential equations,” Ann. Numer. Math, 1(1-4), 63–78. Chernozhukov, V., and H. Hong (2003): “An MCMC approach to classical estimation,” Journal of Econometrics , 115(2), 293–346. Duffie, D., L. H. Pedersen, and K. J. Singleton (2003): “Modeling sovereign yield spreads: A case study of Russian debt,” The Journal of Finance, 58(1), 119–159. Duffie, D., and K. J. Singleton (1993): “Simulated Moments Estimation of Markov Models of Asset Prices,” Econometrica , 61(4), 929–952. Duffie, D., and K. J. Singleton (1999): “Modeling term structures of defaultable bonds,” Review of Financial Studies, 12(4), 687–720. Duffie, D., and K. J. Singleton (2003): Credit risk: pricing, measurement, and management. Princeton University Press, Princeton, N.J. Engle, R. F., and K. F. Kroner (1995): “Multivariate Simultaneous Generalized Arch,” Econometric Theory, 11(1), 122–150. Fenton, V. M., and A. R. Gallant (1996): “Convergence Rates of SNP Density Estimators,” Econometrica, 64(3), 719–727. Gallant, A. R., and J. R. Long (1997): “Estimating stochastic differential equations efficiently by minimum chi-squared,” Biometrika , 84(1), 125–141. Gallant, A. R., and D. W. Nychka (1987): “Semi-Nonparametric Maximum Likelihood Estimation,” Econometrica , 55(2), 363–390. Gallant, A. R., and G. Tauchen (1996): “Which Moments to Match?,” Econometric Theory , 12(4), 657–681. Gallant, A. R., and G. Tauchen (2013a): “EMM: A program for efficient method of moments estimation, Version 1.6, User’s Guide,” Unpublished discussion paper, Duke University, Durham, NC. Gallant, A. R., and G. Tauchen (2013b): “SNP: A Program for Nonparametric Time Series Analysis, Version 9.0, User’s Guide,” Manuscript, Duke University, Durham, NC. Gallant, A. R., and G. E. Tauchen (1988): On fitting a recalcitrant series: the pound/dollar exchange rate, 1974-83 . H.G.B. Alexander Foundation, Chicago. Garcia, R., E. Ghysels, and E. Renault (2010): “The Econometrics of Option Pricing,” in Handbook of Financial Econometrics: Tools and Techniques , ed. by Y. A.-S. P. HANSEN, vol. 1 of Handbooks in Finance , pp. 479–552. North-Holland, San Diego, Chapter 9. Gourieroux, C., A. Monfort, and E. Renault (1993): “Indirect inference,” Journal of Applied Econometrics, 8(S1), S85–S118. Hurn, A. S., J. I. Jeisman, and K. A. Lindsay (2007): “Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations,” Journal of Financial Econometrics , 5(3), 390–455. Hurn, A. S., K. A. Lindsay, and A. J. McClelland (2013): “A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions,” Journal of Econometrics , 172(1), 106–126. Jarrow, R. A. (2004): “Risky coupon bonds as a portfolio of zero-coupon bonds,” Finance Research Letters , 1(2), 100–105. Jarrow, R. A., and S. M. Turnbull (1995): “Pricing Derivatives on Financial Securities Subject to Credit Risk,” The Journal of Finance , 50(1), 53–85. Jensen, B., and R. Poulsen (2002): “Transition densities of diffusion processes: numerical comparison of approximation techniques,” The Journal of Derivatives, 9(4), 18–32. Johannes, M. S., N. G. Polson, and J. R. Stroud (2009): “Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices,” Review of Financial Studies, 22(7), 2759–2799. Karatzas, I., and S. E. Shreve (1991): Brownian motion and stochastic calculus. Springer-Verlag, New York. Kloeden, P. E., and E. Platen (1992): Numerical solution of stochastic differential equations. Springer-Verlag, Berlin. Kloeden, P. E., E. Platen, and H. Schurz (1994): Numerical Solution of SDE Through Computer Experiments . Springer Science & Business Media. Lando, D. (1998): “On cox processes and credit risky securities,” Review of Derivatives Research, 2(2-3), 99–120. Lee, B.-S., and B. F. Ingram (1991): “Simulation estimation of time-series models,” Journal of Econometrics , 47(2–3), 197–205. Longstaff, F. A., S. Mithal, and E. Neis (2005): “Corporate Yield Spreads: Default Risk or Liquidity? New Evidence from the Credit Default Swap Market,” The Journal of Finance, 60(5), 2213–2253. Øksendal, B. (2000): Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin; New York, 5th edition edn. Pakes, A., and D. Pollard (1989): “Simulation and the Asymptotics of Optimization Estimators,” Econometrica , 57(5), 1027–1057. Pan, J. (2002): “The jump-risk premia implicit in options: evidence from an integrated time-series study,” Journal of Financial Economics, 63(1), 3–50. Pan, J., and K. J. Singleton (2008): “Default and Recovery Implicit in the Term Structure of Sovereign CDS Spreads,” The Journal of Finance, 63(5), 2345–2384. Pastorello, S., V. Patilea, and E. Renault (2003): “Iterative and Recursive Estimation in Structural Nonadaptive Models,” Journal of Business & Economic Statistics, 21(4), 449–482. Pedersen, A. R. (1995): “A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations,” Scandinavian Journal of Statistics, 22(1), 55–71. Rogers, L. C. G., and D. Williams (2000): Diffusions, Markov Processes and Martingales: Volume 2, Itˆo Calculus, vol. 2. Cambridge University Press, Cambridge, U.K. ; New York, 2 edition edn. Sauer, T. (2013): “Computational solution of stochastic differential equations,” Wiley Interdisciplinary Reviews: Computational Statistics, 5(5), 362–371. Schwarz, G. (1978): “Estimating the Dimension of a Model,” The Annals of Statistics, 6(2), 461–464. Smith, A. A. (1993): “Estimating nonlinear time-series models using simulated vector autoregressions,” Journal of Applied Econometrics, 8(S1), S63–S84. Stramer, O., and J. Yan (2007): “On Simulated Likelihood of Discretely Observed Diffusion Processes and Comparison to Closed-Form Approximation,” Journal of Computational and Graphical Statistics, 16(3), 672–691. Stroock, D. W., and S. R. S. Varadhan (2005): Multidimensional Diffusion Processes. Springer, Berlin; New York. Zhang, F. X. (2004): “What Did the Credit Market Expect of Argentine Default? Evidence from Default Swap Data,” No. 2003-25. Board of Governors of the Federal Reserve System (US). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/86782 |