Li, Chenxing (2022): A multivariate GARCH model with an infinite hidden Markov mixture.

Preview |
PDF
MPRA_paper_112792.pdf Download (958kB) | Preview |
Abstract
This paper proposes a new Bayesian semiparametric model that combines a multivariate GARCH (MGARCH) component and an infinite hidden Markov model. The new model nonparametrically approximates both the shape of unknown returns distributions and their short-term evolution. It also captures the smooth trend of the second moment with the MGARCH component and the potential skewness, kurtosis, and volatility roughness with the Bayesian nonparametric component. The results show that this more-sophisticated econometric model not only has better out-of-sample density forecasts than benchmark models, but also provides positive economic gains for a CRRA investor at different risk-aversion levels when transaction costs are assumed. After considering the transaction costs, the proposed model dominates all benchmark models/portfolios when No Short-Selling or No Margin-Trading restriction is imposed.
Item Type: | MPRA Paper |
---|---|
Original Title: | A multivariate GARCH model with an infinite hidden Markov mixture |
Language: | English |
Keywords: | Multivariate GARCH; IHMM; Bayesian nonparametric; Portfolio allocation; Transaction costs |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C34 - Truncated and Censored Models ; Switching Regression Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 112792 |
Depositing User: | Dr Chenxing Li |
Date Deposited: | 20 Apr 2022 07:07 |
Last Modified: | 20 Apr 2022 07:07 |
References: | Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics, 89(4):701–720. Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, pages 1152–1174. Bayer, C., Friz, P., and Gatheral, J. (2016). Pricing under rough volatility. Quantitative Finance, 16(6):887–904. Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). The infinite hidden Markov model. In Advances in Neural Information Processing Systems, pages 577–584. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307–327. Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The Review of Economics and Statistics, pages 498–505. Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy, 96(1):116–131. Bollerslev, T., Patton, A. J., and Quaedvlieg, R. (2018). Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions. Journal of Econometrics, 207(1):71–91. Bonato, M. (2012). Modeling fat tails in stock returns: a multivariate stable-GARCH approach. Computational Statistics, 27(3):499–521. Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of econometrics, 86(2):221–241. Dufays, A. (2016). Infinite-state Markov-switching for dynamic volatility. Journal of Financial Econometrics, 14(2):418–460. Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3):339–350. Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11(1):122–150. Fleming, J., Kirby, C., and Ostdiek, B. (2001). The economic value of volatility timing. The Journal of Finance, 56(1):329–352. Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2011). A sticky HDP-HMM with application to speaker diarization. The Annals of Applied Statistics, pages 1020–1056. Gatheral, J., Jaisson, T., and Rosenbaum, M. (2018). Volatility is rough. Quantitative Finance, 18(6):933–949. Glasserman, P. and He, P. (2020). Buy rough, sell smooth. Quantitative Finance, 20(3):363–378. Guidolin, M. and Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11):3503–3544. Guidolin, M. and Timmermann, A. (2008). International asset allocation under regime switching, skew, and kurtosis preferences. The Review of Financial Studies, 21(2):889–935. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, pages 357–384. Hou, C. (2017). Infinite hidden Markov switching VARs with application to macroeconomic forecast. International Journal of Forecasting, 33(4):1025–1043. Jensen, M. J. and Maheu, J. M. (2013). Bayesian semiparametric multivariate GARCH modeling. Journal of Econometrics, 176(1):3–17. Jin, X. and Maheu, J. M. (2016). Bayesian semiparametric modeling of realized covariance matrices. Journal of Econometrics, 192(1):19–39. Jin, X., Maheu, J. M., and Yang, Q. (2019). Bayesian parametric and semiparametric factor models for large realized covariance matrices. Journal of Applied Econometrics, 34(5):641–660. Jin, X., Maheu, J. M., and Yang, Q. (2022). Infinite Markov pooling of predictive distributions. Journal of Econometrics, 228(2):302–321. Jochmann, M. (2015). Modeling U.S. inflation dynamics: A Bayesian nonparametric approach. Econometric Reviews, 34(5):537–558. Jondeau, E. and Rockinger, M. (2006). Optimal portfolio allocation under higher moments. European Financial Management, 12(1):29–55. Kawakatsu, H. (2006). Matrix exponential GARCH. Journal of Econometrics, 134(1):95–128. Kroner, K. F. and Ng, V. K. (1998). Modeling asymmetric comovements of asset returns. The Review of Financial Studies, 11(4):817–844. Livieri, G., Mouti, S., Pallavicini, A., and Rosenbaum, M. (2018). Rough volatility: evidence from option prices. IISE transactions, 50(9):767–776. Maheu, J. M. and McCurdy, T. H. (2000). Identifying bull and bear markets in stock returns. Journal of Business & Economic Statistics, 18(1):100–112. Maheu, J. M. and Shamsi Zamenjani, A. (2021). Nonparametric dynamic conditional beta. Journal of Financial Econometrics, 19(4):583–613. Maheu, J. M. and Yang, Q. (2016). An infinite hidden Markov model for short-term interest rates. Journal of Empirical Finance, 38:202–220. Pástor, L. and Stambaugh, R. F. (2001). The equity premium and structural breaks. The Journal of Finance, 56(4):1207–1239. Peng, C. and Kim, Y. S. (2020). Portfolio optimization on multivariate regime switching GARCH model with normal tempered stable innovation. arXiv preprint arXiv:2009.11367. Pesaran, B. and Pesaran, M. H. (2010). Conditional volatility and correlations of weekly returns and the var analysis of 2008 stock market crash. Economic Modelling, 27(6):1398–1416. Pesaran, M. H., Pettenuzzo, D., and Timmermann, A. (2006). Forecasting time series subject to multiple structural breaks. The Review of Economic Studies, 73(4):1057–1084. Pettenuzzo, D. and Ravazzolo, F. (2016). Optimal portfolio choice under decision-based model combinations. Journal of Applied Econometrics, 31(7):1312–1332. Pettenuzzo, D. and Timmermann, A. (2011). Predictability of stock returns and asset allocation under structural breaks. Journal of Econometrics, 164(1):60–78. Pitman, J. (2002). Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformations of an interval partition. Combinatorics, Probability and Computing, 11(5):501–514. Rydén, T., Teräsvirta, T., and Åsbrink, S. (1998). Stylized facts of daily return series and the hidden Markov model. Journal of Applied Econometrics, 13(3):217–244. Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, pages 639–650. Shi, S., Liu, X., and Yu, J. (2021). Fractional stochastic volatility model. Available at SSRN 3724733. Song, Y. (2014). Modelling regime switching and structural breaks with an infinite hidden Markov model. Journal of Applied Econometrics, 29(5):825–842. Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–1581. Tse, Y. K. and Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business & Economic Statistics, 20(3):351–362. Van Gael, J., Saatci, Y., Teh, Y. W., and Ghahramani, Z. (2008). Beam sampling for the infinite hidden Markov model. In Proceedings of the 25th International Conference on Machine Learning, pages 1088–1095. ACM. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112792 |
Available Versions of this Item
- A multivariate GARCH model with an infinite hidden Markov mixture. (deposited 20 Apr 2022 07:07) [Currently Displayed]