Yang, Zixiu and Fantazzini, Dean (2022): Using crypto assets pricing methods to build technical oscillators for short-term bitcoin trading. Forthcoming in: Information
Preview |
PDF
MPRA_paper_115508.pdf Download (2MB) | Preview |
Abstract
This paper examines the trading performances of several technical oscillators created using crypto assets pricing methods for short-term bitcoin trading. Seven pricing models proposed in the professional and academic literature were transformed into oscillators, and two thresholds were introduced to create buy and sell signals. The empirical back testing analysis showed that some of these methods proved to be profitable with good Sharpe ratios and limited max drawdowns. However, the trading performances of almost all methods significantly worsened after 2017, thus indirectly confirming an increasing financial literature that showed that the introduction of bitcoin futures in 2017 improved the efficiency of bitcoin markets.
Item Type: | MPRA Paper |
---|---|
Original Title: | Using crypto assets pricing methods to build technical oscillators for short-term bitcoin trading |
Language: | English |
Keywords: | C32, C51; C53; C58; G11; G12; G17; |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 115508 |
Depositing User: | Prof. Dean Fantazzini |
Date Deposited: | 30 Nov 2022 14:49 |
Last Modified: | 30 Nov 2022 14:49 |
References: | Alabi, K. Digital blockchain networks appear to be following Metcalfe’s Law. Electron. Commer. Res. Appl. 2017, 24: 23-29 Ao, Z.; Horvath, G.; Zhang, L. Are decentralized finance really decentralized? A social network analysis of the Aave protocol on the Ethereum blockchain. arXiv 2022, arXiv:2206.08401. Baig, S.; Haroon, O.; Sabah, N. Price clustering after the introduction of bitcoin futures. Appl. Financ. Lett. 2020, 9, 36–42. Baumann, A.; Fabian, B.; Lischke, M. Exploring the Bitcoin Network. WEBIST 2014, 1, 369-374. Berengueres, J. Valuation of Cryptocurrency Mining Operations. Ledger 2018, 3, 60-67. Benetton, M.; Compiani, G.; Morse, A. Cryptomining: Energy use and local impact. University of California, Berkeley, 2019, working paper. Bonifazi, G.; Corradini, E.; Ursino, D.; Virgili, L. A Social Network Analysis–Based Approach to Investigate User Behaviour during a Cryptocurrency Speculative Bubble. J. Inf. Sci. 2021, 01655515211047428. Bonifazi, G.; Corradini, E.; Ursino, D.; Virgili, L. Defining user spectra to classify Ethereum users based on their behavior. J. Big Data 2022, 9(1), 1-39. Borgatti, S. P.; Everett, M. G.; Johnson, J. C. Analyzing social networks. Sage: London, 2018. Bovet, A.; Campajola, C.; Mottes, F.; Restocchi, V.; Vallarano, N.; Squartini, T.; Tessone, C.J. The evolving liaisons between the transaction networks of Bitcoin and its price dynamics. arXiv 2019, arXiv:1907.03577. Burniske, Chris, and Jack Tatar. Cryptoassets: The Innovative Investor’s Guide to Bitcoin and Beyond. McGraw-Hill: New York, 2018. Chang, T. H.; Svetinovic, D. Data analysis of digital currency networks: Namecoin case study. In 21st International Conference on Engineering of Complex Computer Systems (ICECCS), Nov 6-8, Dubai, United Arab Emirates. 2016, pp. 122-125. Coinmetrics. 2018. Introducing Realized Capitalization. Available at: https://coinmetrics.io/realized-capitalization . Accessed on July 1, 2022. Corbet, S.; Lucey, B.; Yarovaya, L.Datestamping the bitcoin and ethereum bubbles. Finance Res. Lett. 2018, 26, 81–88 Delgado-Mohatar, O.; Felis-Rota, M.; Fern´andez-Herraiz, C. The Bitcoin mining breakdown: Is mining still profitable? Econ. Lett. 2019, 184, 108492. Evans, Alex. 2018. On value, velocity and monetary theory: A new approach to cryptoasset valuations. Medium. Available at https://web.archive.org/web/20210918091400/https://medium.com/blockchannel/on-value-velocity-and-monetarytheory-a-new-approach-to-cryptoasset-valuations-32c9b22e3b6f , Accessed on July 1, 2022. Fantazzini, D. Quantitative Finance with R and Cryptocurrencies. Amazon KDP: Seattle, 2019, ISBN-13: 978–1090685315. Fantazzini, D. Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death. Journal of Risk and Financial Management. 2022, 15(7): 304. Fantazzini, D; Kolodin, N. Does the hashrate affect the bitcoin price? Journal of Risk and Financial Management. 2020, 13, 263. Fantazzini, D.; Calabrese, R.. Crypto Exchanges and Credit Risk: Modeling and Forecasting the Probability of Closure. Journal of Risk and Financial Management. 2021, 14(11), 516. Fantazzini, D.; Zimin, S. A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies. Journal of Industrial and Business Economics. 2020, 47(1), 19-69. Ferretti, S.; D’Angelo, G. On the ethereum blockchain structure: A complex networks theory perspective. Concurr. Comput. Pract. Exp. 2019, 32(12), e5493. Fry, J. Booms, busts and heavy-tails: The story of bitcoin and cryptocurrency markets? Econ. Lett. 2018, 171, 225–29. Hargrave, J.; Sahdev, N.; Feldmeier, O. How value is created in tokenized assets. In: Blockchain Economics: Implications of Distributed Ledgers-Markets, Communications Networks, and Algorithmic Reality, Melanie, S., Jason, P., Soichiro, T., Frank, W Paolo, T. eds.; 2019. Volume 1, World Scientific: New Jersey. Garcia-Monleon, F.; Danvila-del-Valle, I.; Lara, F. Intrinsic value in crypto currencies. Technol. Forecast. Soc. Change 2021, 162, 120393. Gerlach, J.C.; Guilherme, D.; Sornette, D. Dissection of bitcoin’s multiscale bubble history from January 2012 to February 2018. Royal Soc. Open Sci. 2019, 6, 180643. Goutte, S.; Khaled, G., Saadi; S. 2022. Cryptofinance: A New Currency for A New Economy. World Scientific: Singapore. Gradojevic, N.; Kukolj, D.; Adcock, R.; Djakovic, V. Forecasting Bitcoin with technical analysis: A not-so-random forest? Int. J. Forecast. 2021, in press. Hattori, T.; Ryo, I. Did the introduction of bitcoin futures crash the bitcoin market at the end of 2017? N. Am. J. Econ. Finance 2021, 56, 101322. Huang, J. Z.; Huang, W.; Ni, J. Predicting bitcoin returns using high-dimensional technical indicators. J. Finance and Data Sci. 2019, 5(3), 140-155. Huynh, T.; Luu, D. When Elon Musk Changes his Tone, Does Bitcoin Adjust Its Tune? Comput. Econ. 2022, in press. Kaal, W.; Evans, S.; Howe, H. Digital Asset Valuation. University of St. Thomas (Minnesota) Legal Studies Research Paper 2022, No. 22-10, Available at SSRN: https://ssrn.com/abstract=4033886. Kalichkin, D. Rethinking Network Value to Transactions (NVT) Ratio. Medium, 2018. Available at: https://medium.com/cryptolab/httpsmedium-com-kalichkin-rethinking-nvt-ratio-2cf810df0ab0 . Accessed on July 1, 2022. Kochling, G.; Muller, J.; Posch, P. Does the introduction of futures improve the efficiency of bitcoin? Finance Res. Lett. 2019, 30, 367–70. Kondor, D.; P´osfai, M.; Csabai, I.; Vattay, G. Do the rich get richer? An empirical analysis of the Bitcoin transaction network. PloS one 2014, 9(2), e86197. Kyriazis, N.; Papadamou, S.; Tzeremes, P.; Corbet, S. The differential influence of social media sentiment on cryptocurrency returns and volatility during COVID-19. Q. Rev. Econ. Finance 2022, in press. Jalan, A.; Matkovskyy, R.; Urquhart, A.What effect did the introduction of bitcoin futures have on the bitcoin spot market? Eur. J. Finance 2021, 27, 1251–81. Jernej, D. Approaches to Crypto Assets Valuation. Master thesis, Ljubljana: University of Ljubljana, 2021. Li, Y.; Islambekov, U.; Akcora, C.; Smirnova, E.; Gel, Y.R.; Kantarcioglu, M. Dissecting Ethereum Blockchain Analytics: What We Learn from Topology and Geometry of the Ethereum Graph? In Proceedings of the 2020 SIAM International Conference on Data Mining, Hilton Cincinnati, OH, USA, 7–9 May 2020; pp. 523–531. Liang, J.; Li, L.; Zeng, D. Evolutionary dynamics of cryptocurrency transaction networks: An empirical study. PloS one 2018, 13(8), e0202202. Liu, Y. Cryptocurrency Valuation, Medium, 2019. Available at: https://medium.com/coinmonks/cryptocurrencyvaluation-d9979074404 . Accessed on July 1, 2022. Liu, Y.; Zhang,, L. Cryptocurrency valuation: An explainable AI approach, arXiv 2022, arXiv:2201.12893. Liu, R.; Shanfeng, W.; Zili, Z.; Zhao, Z. Is the introduction of futures responsible for the crash of bitcoin? Finance Res. Lett. 2020 34, 101259. Mahmudov, Murad, and Puell, David. Bitcoin Market-Value-to-Realized-Value (MVRV) Ratio. Medium, 2018. Available at: https://medium.com/adaptivecapital/bitcoin-market-value-to-realized-value-mvrv-ratio-3ebc914dbaee . Accessed on July 1, 2022. Metcalfe, B. Metcalfe’s law after 40 years of Ethernet. Computer 2013, 46(12), 26-31. Motamed, A.P.; Bahrak, B. Quantitative analysis of cryptocurrencies transaction graph. Appl. Netw. Sci. 2019, 4(1), 1-21. Nakano, M.; Takahashi, A.; Takahashi, S. Bitcoin technical trading with artificial neural network. Phys. A: Stat. Mech. Appl. 2018, 510, 587-609. Odlyzko, A.; Briscoe, B.; Tilly, B. Metcalfe’s law is wrong-communications networks increase in value as they add members-but by how much? IEEE Spectr. 2006, 43(7), 34-39. Ortu, M.; Uras, N.; Conversano, C.; Bartolucci, S.; Destefanis, G. On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Syst. Appl. 2022, 198, 116804. Otte, E.; Rousseau, R. Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 2002, 28(6), 441-453. Papadamou, S.; Kyriazis, N. A.; Tzeremes, P.; Corbet, S. Herding behaviour and price convergence clubs in cryptocurrencies during bull and bear markets. J. Behav. Exp. Finance 2021a, 30, 100469. Papadamou, S.; Kyriazis, N. A.; Tzeremes, P. Non-linear causal linkages of EPU and gold with major cryptocurrencies during bull and bear markets. N. Am. J. Econ. Finance 2021b, 56, 101343. Pav, S. The Sharpe Ratio: Statistics and Applications. Chapman and Hall/CRC: Boca-Raton, Florida, 2021. Peterson, T. Metcalfe’s Law as a Model for Bitcoin’s Value. Altern. Invest. Anlst. Rev. 2018, 2, 9-18 Romano, Y.; Patterson, E.; Candes, E. Conformalized quantile regression. Adv Neural Inf Process Syst 2019, 32, 3543–3553 . Ruan, Q.; Lu, M.; Lv, D. Effect of introducing Bitcoin futures on the underlying Bitcoin market efficiency: A multifractal analysis. Chaos Solit. Fractals 2021, 153, 111576. Romanchenko, O.; Shemetkova, O.; Piatanova, V.; Kornienko, D. Approach of estimation of the fair value of assets on a cryptocurrency market. In, The 2018 International Conference on Digital Science, 2018, pp. 245-253. Springer, Cham. Sabalionis, A.; Wenbo, W.; Park, H. What affects the price movements in Bitcoin and Ethereum? Manch. Sch 2021, 89(1), 102-127. Sarkar, A. Top 3 reasons why Bitcoin hash rate continues to attain new all-time highs. Cointelegraph 2022, October 9. Available online: https://cointelegraph.com/news/top-3-reasons-why-bitcoin-hash-rate-continues-to-attain-new-alltime- highs (accessed on 12/11/2022). Shapiro, C.; Varian, H. Information rules: A strategic guide to the network economy. Harvard Business Press: Boston, 1998. Stylianou, K.; Spiegelberg, L.; Herlihy, M.; Carter, N. Cryptocurrency Competition and Market Concentration in the Presence of Network Effects. Ledger 2021, 6, 81-101. Thum, M. The economic cost of bitcoin mining. CESifo Forum 2018, 19(1), 43-45. Vallarano, N.; Tessone, C. J.; Squartini, T. Bitcoin Transaction Networks: an overview of recent results. Front. Phys. 2020, 8, 286. Wasserman, S.; Faust, K. Social network analysis: Methods and applications. Cambridge University Press: Cambridge, 1994. Wonder, Awe. Introducing The Bitcoin “MVRV Z” Metric That Predicts Market Tops with 90%+ Accuracy. Medium, 2018. Available at: https://medium.com/@Awe andWonder/introducing-the-bitcoin-mvrv-z-score-metric-that-predictsmarket-tops-with-90-accuracy-89d90df043d7 . Accessed on July 1, 2022. Woo, Willy. 2017. Is Bitcoin In A Bubble? Check The NVT Ratio. Forbes, Available at: https://www.forbes.com/sites/wwoo/2017/09/29/in-a-bubble-check-the-nvt-ratio . Accessed on July 1, 2022. Woo, Willy. 2018. Bitcoin NVT Signal. Available at: http://charts.woobull.com/bitcoin-nvt-signal . Accessed on July 1, 2022. 21Shares. 2020. Valuing Bitcoin. Available at: https://cdn.21shares.com/img/uploads/valuing-bitcoin-07-2020.pdf . Accessed on July 1, 2022. Wright, J.; Yam, S., Yung, S. A test for the equality of multiple Sharpe ratios. Journal of Risk 2014, 16(4), 3-21. Yang, S.; Keller, F.B.; Zheng, L. Social network analysis: Methods and examples. Sage Publications: London 2016. Xiong, J.; Liu, Q.; Zhao, L. A new method to verify bitcoin bubbles: Based on the production cost. N. Am. J. Econ. Finance 2020, 51, 101095. 21Shares. 2020. Valuing Bitcoin. 21Shares. Available at: https://21shares.com/research/valuing-bitcoin/ Accessed on July 1, 2022. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/115508 |